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Abstract

Modified Binary Cuckoo Search using rough set theory for Feature

Selection

by Ahmed Fayez Alia

Feature Selection (FS) for classification is an important process to find the mini-

mal subset of features from original data by removing the redundant and irrelevant

features. This process aims to improve the classification accuracy, shorten compu-

tational time of classification algorithms, and reduce the complexity of classifica-

tion model. Rough Set Theory (RST) is one of the effective approaches for feature

selection, but it uses complete search to search for all combinations of features

and uses dependency degree to evaluate these combinations. However, due to its

high cost, complete search is not feasible for large datasets. In addition, RST, as

it replies on the use nominal features, it cannot deal efficiently with mixed and

numerical datasets [1]. Therefore, Meta-Heuristics algorithms especially nature

inspired search algorithms have been widely used to replace the reduction part in

RST. In addition other factors such as frequent values are used with dependency

degree to improve the performance of RST for mixed and numerical datasets.

This thesis aims to propose a new filter feature selection approach for classifica-

tion by developing a modified BCS algorithm, and a new objective function based

on RST that utilizes distinct values to select the minimum number of features

in an improved computational time yet without significantly reducing the perfor-

mance of classification for nominal, mixed, and numerical datasets with different

characteristics.

In the evaluation, our work and baseline approach are evaluated on sixteen datasets

that are taken from the UCI repository of machine learning database. Also our

work is compared with two known filter FS approaches (genetic and particle swarm

optimization with correlation feature selection). Decision tree and näıve bays

classification algorithms are used for measuring the classification performance of

all approaches that are used in the evaluation. The results show our approach

achieved best feature reduction for all mixed, all numerical, and most of nominal

datasets compared to other approaches. Also our work achieved less computational

time for all datasets compared to the baseline approach.
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 ملخص

مجموعات نظرية و حل مشكلة اختيار المعالم باستخدام خوارزمية بحث الوقواق الثنائية المعدلة 
 الاستقراب

 بياناتمجلومة اتمن  من المعالم قل مد  ممكن اتتنيي  ي  مللية مملة ايجاا   فيمشكلة اختيار المعالم 
ه اتعللية ميات اتتنيي . يذمعلومات يامة لخوارز  ةي و تقدم زاتة المعالم اتتي اي تحوي  صلية من طريق إالأ

. ل خوارزميات اتتنيي من قب ئهوتقليل اتوقت المطلوب تبيا وتبسيطه اتتنيي  نموذج لى تحسين  قةتهدف إ
شامل ، وتكيما تستخدم اتبحث اتاتفعاتة في اختيار المعالم قاتطر  حدى نظرية مجلومات اايستقراب ي  إ

اتبحث   يذه الحلول. وتكن طريقةيضا تستخدم  رجة اايمتلا ية تتقويمكية، واتلبحث في كل الحلول المل
 فقط ة رجة اايمتلا ية فعاتفإن ، اضافة الى ذتك لمجلومات اتبيانات اتضخلة مياسبةاتشامل مكلفة وغير 

اتعليا وخنوصا الخوارزميات المستوحاه  اءخوارزميات ااي فإن . تذتك nominalلمجلومات اتبيانات من اتيوع 
، شامل في طريقة مجلومات اايستقراباصبحت تستخدم بشكل واسع تتحل محل اتبحث اتمن اتطبيعة 

تستخدم مع  رجة اايمتلا ية تتحسين ا اء مجلومات  اتتي باايضافة الى موامل اخرى مثل اتقيم المتكررة
 .في مختل  انواع مجلومات اتبيانات اايستقراب

ن خلال تطوير م الى تقديم طريقة جديدة لمعالجة مشكلة اختيار المعالم في اتتنيي ة تهدف حذه اايطرو ي
اتقيم المتكرره  و  ملى نظرية مجلومات اايستقراب تعتلدخوارزمية اتوقواق اتثيائية وتطوير  اتة يدف جديده 

، وان تتنيي ا خوارزميات ا اءكفاءة   ايختيار اقل مد  ممكن من المعالم بوقت قليل ومن  ون تقليل واضح في
 .الخنائص في تيومةالم بياناتاتمجلومات انواع مختلفة من يكون فعااي ملى 

. ثم قليا بمقارنة ملليا بثلاثة UCIماخوذة من  مجلومة بيانات 16 ملليا ملى بتقويم في مرحلة اتتقييم، قليا 
اتطريقة )اتثيائية ونظرية اايستقراب قبل تعديلملاخوارزمية اتوقواق من نفس اتفئة: معروفة طرق اخرى 
خوارزمية ) ا تم استخدام خوارزميات اتتنيي زمية اسراب اتطيور والخوارزمية الجييية. ايضر خواو . اايساسية(

 يم ا اء اتتنيي  في يذه اتطرق اايربعة.تقو  من اجل (naïve Bayesشجرة اتخاذ اتقرار وخوارزمية 

 يا الجديده حققت افضل اتيتائج ملى مستوى مد  المعالم المختارة باايضافة الى قيماظمرت اتيتائج ان طريقت
ا اء اتتنيي  مقارنة باتطرق اايخرى اتتي استخدمت في اتتجارب في معظم مجلومات اتبيانات. ايضا اتطريقة 

 اتتجارب. الجديدة مقارنة باتطريقة اايساسية احتاجت وقت اقل في كل مجلومات اتبيانات المستخدمة في



Acknowledgements

I would like to express my sincere gratitude to those who gave me the assistance

and support during my master study especially my wife.

I would like to thank all three professors, Dr. adel taweel, Dr. Abualseoud Hanani

Dr. Hashem Tamimi, who served on my thesis committee. Their comments and

suggestions were invaluable. My deepest gratitude and appreciation goes to my

supervisors Dr. Adel Taweel for his continuous support and advice at all stages of

my work.

Special thanks for DR. Majdi Mafarjeh who helped me to choose the field of this

thesis.

Another word of special thanks goes to Birzeit University, especially for all those

in the Faculty of Graduate Studies / Computing Program

I wish to thank my collegues (especially Ibrahim Amerya and Khalid Barham) and

my fellow students (especially Ali Aljadda) for their encouragement and support.

v



Contents

Declaration of Authorship i

Abstract iii

Acknowledgements v

Contents vi

List of Figures ix

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Why Feature Selection is important . . . . . . . . . . . . . . 5

1.3.2 Challenges of Feature Selection . . . . . . . . . . . . . . . . 5

1.3.3 Why Binary Cuckoo Search . . . . . . . . . . . . . . . . . . 6

1.3.4 Why Rough Set Theory . . . . . . . . . . . . . . . . . . . . 7

1.3.5 Limitations of Existing Work . . . . . . . . . . . . . . . . . 7

1.4 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11

2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Data Representation . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Learning and Evaluation . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Classification Performance . . . . . . . . . . . . . . . . . . . 13

vi



Contents vii

2.1.4 Classification Algorithms . . . . . . . . . . . . . . . . . . . 14

2.1.4.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . 14
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Chapter 1

Introduction

This chapter introduces the thesis. It describes the problem statement, motiva-

tions, goal and objectives, and organization of the thesis.

1.1 Introduction

The rapid grow of the volume of the data in many fields, such as web, scientific

data, business data, presents several challenges to researcher to develop more

efficient data mining methods to extract useful and meaningful information [2, 3].

Datasets are often structured as database table which its records are called objects,

and its columns are called features which describe each object [4]. Classification

is an important example of data mining, which aims to classify each object in the

dataset into different groups [5, 6].

There is a large number of features in datasets which causes major problem for

classification known as curse of dimensionality [3, 7] . Curse of dimensionality

causes exponential increase in the size of search space with adding extra dimensions

(features) for learning classification algorithm, and it makes the data sparser.

In more details, the curse of dimensionality causes the following problems for

classification [3, 7]:

• Reduces the classification accuracy.

• Increases the classification model complexity.

1



Chapter 1. Introduction 2

• Increases the computational time.

• Be a problem in storage and retrieval.

Usually, datasets have three types of features [3, 7]: First type is relevant features

which provide useful information to learning classification algorithms. Second

type is irrelevant features which provide no useful information to classification

algorithms. Last type is redundant features that provide no more information

than the currently selected features to classification algorithms. Redundant and

irrelevant features are not useful for classification, this means removal of these

features does not affect the useful information in the datasets for classification,

and it helps to solve the curse of dimensionality problem [4, 5]. But usually,

determining which features are relevant is very difficult before data collection, and

before knowing the effects of redundant/irrelevant on classification algorithms.

This means we faced feature selection problem, in other words, the goal of feature

selection is that to determine the relevant features [3].

1.2 Problem Statement

Feature Selection (FS) is a general problem for data mining, which aims to select

the most relevant features that are necessary and sufficient to the target concept

[4]. Nowadays, the amount of data is growing rapidly due to rapid growth in

technologies of data collection and storage. This means, the number of datasets

is growing rapidly, datasets are larger and more complex. This increases the

importance of FS nowadays and the need for data mining algorithms to extract

the knowledge automatically from these large and complex datasets. This thesis

will study the FS for classification.

Koller and Sahami [6] defined FS as ” choose a subset of features for improving

the classification performance or reducing the complexity of the model without

significantly decreasing the classification accuracy of the classifier built using only

the selected features ”.

Number of selected features without significantly reducing the classification per-

formance (Features Reduction), computational time, and datasets characteristics

are three factors used to evaluate the FS approaches [3]. In general, good FS
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approaches are capable to achieve features reduction in short computational time

for different datasets with different characteristics such as different number of fea-

tures, different number of objects, different types(nominal, mixed, and numerical

datasets. section 2.1.1 explains these types ) , and different number of classes [3, 8].

FS has two conflicting objectives (maximizing the classification performance with

minimizing the number of features), for this, FS is multi objective problem [8, 9].

In general, the search strategy which is used to select the candidate feature subsets

and objective function which is used to evaluate these candidate subsets are two

main steps in any FS approach [3, 10]. Search strategy uses three strategies to

search for subset of features which are: complete, heuristic and meta-heuristic

search. Complete Search is very expensive because it covers all combinations of

features. Heuristic Search is faster than complete search because it makes smart

choices to select the near optimal subset without searching in all combination of

features. Meta-heuristic needs less number of assumptions to find the near optimal

feature subset compared to heuristic search. The objective function is responsible

for determining the relevancy of the generated feature subset candidate towards

classifier algorithms [3, 10].

Existing FS approaches are categorized into two categories: Filter approaches and

wrapper approaches. Filter approaches select the feature subset independently

from any classifier algorithms using statistical characteristics (such as dependency

degree [11] and information measure [12]) of the data to evaluate these subset of

features. But the wrapper approaches include a classification algorithm as a part

of the objective function to evaluate the selected feature subsets. Filter approaches

are much faster and more general than wrapper approaches [3]. This research is

interested in filter FS approaches.

FS is an optimization problem that is the problem of finding the best solution from

all feasible solutions [5]. In general, meta-heuristics algorithms are very efficient

for optimization problems with very large search space [13]. Meta-heuristics algo-

rithms represent a group of approximate techniques that aim to provide good so-

lutions computed in a reasonable time for solving optimization problems, but does

not guarantee the optimality of the obtained solutions [13, 14]. Nature Inspired

Algorithms (NIAs) are a population meta-heuristic type that improves multiple

candidate solutions concurrently [14], and they are developed based on character-

istics of biological systems. NIAs are widely used in search strategy for FS. Also
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Rough Set Theory Dependency Degree (RSTDD) is widely used as objective func-

tion for FS to measures the dependency between the combinations of features and

class labels using dataset alone without complexity [15–17]. [18–26] are examples

of filter FS approaches that combine RSTDD and NIAs.

Most approaches that use NIAs and RSTDD suffer from high computational cost,

local optimal, slow convergence, weak global convergence, and hence not suitable

for different datasets with different characteristics such as sizes, and features types

[13, 27]. Therefore the Cuckoo Search (CS) is a powerful search algorithm in

many areas, because it uses efficient local and global search mechanism (Hybrid

mechanism) [28, 29]. At each iteration, CS uses global search to generate initial

solutions for local search that makes a little modification to the solutions to find

the nearest optimal feature subset [28].

CS is a NIA from the reproduction strategy of cuckoo birds. The advantages

of CS are that it has quick and efficient convergence, less complexity, easier to

implement, and fewer parameters compared with other NIAs [28–30]. Recently,

two approaches have been reported to use Binary Cuckoo Search (BCS) to solve

FS [31, 32], Unfortunately, [31] is a wrapper approach, and [32] is a filter approach

with some limitations(see section 3.6 for details). BCS is a binary version of

the CS, in which the search space is modeled as a binary string. According to

experiments, the BCS algorithm used in [31] provides an efficient search algorithm

for datasets that have less than 20 features (see section 4.3), but there is a potential

to improve it to become faster, and more efficient for datasets that have large

number of features.

According to [33], classification algorithms prefer the feature subsets which have

high frequent values and high relevancy. But the RSTDD uses the dependency

degree to evaluate the feature subset regardless of the frequent values, for this,

most RSTDD objective functions are efficient for nominal datasets only [1]. In

other words, RSTDD is inefficient for mixed and numerical datasets.

This thesis aims to develop new filter FS approach called Modified Binary Cuckoo

Search based on rough set theory for Feature Selection (MBCSFS) to achieve

feature reduction with improved computational time for nominal, mixed, and nu-

merical datasets with different number of features, objects, and number of classes

by modifying the BCS and developing a new objective function based on RSTDD,

and distinct values.
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1.3 Research Motivation

1.3.1 Why Feature Selection is important

As a computer power and data collection technologies grow, the huge amount

of data is growing rapidly. This means many large and complex datasets are

available that need to be analyzed to extract useful knowledge. Data mining

such as classification has been used widely to search for meaningful patterns in

datasets to extract useful knowledge. But larger datasets, the more complex the

classification algorithms needed to improve the accuracy, and reduce the cost. FS

aims to reduce the number of features of datasets by selecting the relevant features

to achieve the following benefits[2, 3, 5] :

• Improving the performance of classification.

• Reducing the complexity of classification model.

• Reducing the computational time.

• Reducing the storage requirements.

• Providing a better understanding of the data.

• Help to improve the scalability issues.

1.3.2 Challenges of Feature Selection

• FS is a multi-objective problem which aims to balance between the two con-

flicting objectives [74]. Two objectives, one of them maximizes the classifi-

cation performance and the other minimizes the number of selected features.

Many FS approaches succeed to find the high classification performance, but

they fail to find minimum number of features.

• Datasets have different characteristics, such as number of features, number

of objects, features types. This makes it difficult to find an approach suitable

for all datasets. Some of FS approaches are not suitable for large datasets

[18–20]. Also some approaches are not efficient for mixed and numerical

datasets such as FS approaches that use RSTDD only [21, 22].
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• The size of the search space grows exponentially. This means the number of

possible subsets of features is 2n, n is the number of features in the dataset,

this makes the complete search impractical [4]. To solve this problem, the FS

approaches use variety of smart techniques to search for subset of features

without searching in all possible subsets of features [4]. Meta-heuristics

algorithms especially NIAs are very efficient for optimization problems such

as FS [13]. But most existing approaches suffer from high computational

time and weak convergence.

1.3.3 Why Binary Cuckoo Search

BCS is a suitable algorithm to address the search strategy in feature selection

problems for of the following reasons:

• BCS uses a vector of binary bits to represent a search space and a candidate

feature subsets. This is appropriate to feature selection problem. Where the

size of a vector is the number of features in the search space, and the value

in each bit shows whether the corresponding feature is selected or not (1

means selected, 0 means not) [18, 34].

• The search space of FS is large [3], this often causes high computational cost,

slow convergence, and weak global convergence. BCS is less expensive and

can converge faster than other approaches and it is able to effectively search

in large spaces to find the best solution, because it uses global search and

efficient local search [13, 27].

• BCS is easier to implement and it needs fewer parameters compared with

other NIAs [31].

• To the best of our knowledge, one filter approach [32], and one wrapper

approach[31] used BCS to solve the FS. They have shown that BCS has the

potential to address feature selection problem, and that it suffers from some

problems especially for large datasets, such as weak convergence, needs extra

number of iteration to find the best solution and mostly miss small optimal

solution. There is a potential to modify BCS for FS to solve these problems

.
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1.3.4 Why Rough Set Theory

Rough Set Theory (RST) is a mathematical tool to data analysis and data mining,

RST provides RSTDD to measures the dependency between the features [16, 17,

35]. RSTDD is widely used in FS to build objective function to guide the search

algorithms to optimal/nearest solution by calculating the dependencies between

the feature subsets and class labels. RSTDD is efficient method for the following

reasons [16, 17, 35, 36]:

• It does not need any preliminary or additional information about data.

• It allows evaluating the significance of data.

• It is easy to understand.

• Relatively cheaper, when compared to other methods.

1.3.5 Limitations of Existing Work

Filter FS approaches that combine NIAs and RSTDD are efficient approaches, But

most of them suffer from some limitations. Slow, weak convergence, and complex

implementation problems increase the computational time of search algorithm

such as approaches that used ant colony optimization algorithm [17, 18, 20]. Some

approaches do not cover all search space (weak convergence) which increases the

potential to miss nearest optimal feature subsets, in other words, these approaches

generate the feature subsets that have around half number of available features,

which means, these approaches miss the small and large optimal feature subset,

especially on datasets that have 70 features in the best case, 70 features is selected

from experiments results of [21–26, 31] . Also some approaches are affected by poor

initial solutions such as [21–23] . Other approaches use hybrid search mechanism

to increase the efficiency of convergence, but the local search in this mechanism

is weak, and the global search does not cover all search space such as approaches

[24–26]. BCS that is used in [31, 32] approach uses hybrid mechanism, but the

global search does not cover all search space, while the local search is very strong.

There is a potential to improve BCS’s global search to make the BCS faster and

cover most of the search space.
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RSTDD is used in many filter FS to create their objective function [18–26]. But

RSTDD has a main drawback which is inefficient for mixed and numerical datasets

[1]. Classification algorithms prefer the feature subsets that their features are

relevant and have more frequent values [33]. RSTDD measures the relevancy

without measuring the frequent values in each subset. Therefore RSTDD is a bad

indicator for classification performance in mixed and numerical datasets, because

the frequent values in features in these datasets is varies significantly.

1.4 Research Goals

The overall goal of this thesis is to improve the BCS and develop a new objective

function to propose a new filter FS approach for classification. We refer to our new

approach as is MBCSFS, and it aims to reduce the number of selected features

without significant reduction of classification performance in short computational

time for mixed, nominal, and numerical datasets with different number of features,

objects, and classes. To achieve this overall goal, the following research objectives

have been established:

• Developing new initialization mechanism which is dividing the initialization

mechanism to three parts to cover most of search space. The first part

generates randomly small feature subsets. Second part generates randomly

medium feature subsets. Last part generates randomly large feature subsets.

This mechanism helps to increase the speed of convergence, and it makes the

convergence covers most of the search space.

• Developing new global search which is also divided to three parts as new

initialization mechanism to make the convergence more efficient.

• New stopping criterion is proposed to stop the algorithm when in three

successive iterations there are no improvement in the current solution. This

helps to reduce the computational time.

• New objective function based on RSTDD and distinct values was developed

to guide the MBCS to feature subsets that have minimum number of features

and maximum classification accuracy. This objective function calculates the

quality of feature subsets by balancing between the dependency, distinct
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values and their size. The function used RSTDD to measure the dependency

between the selected features and class labels. It used distinct values to

measure the frequent values for feature subsets.

• In order to examine the performance of the proposed algorithm (MBCSFS),

it is compared to BCSFS which is described as the baseline of MBCSFS,

and it is the first approach that combines the RSTDD [19] and BCS [31],

genetic [37] with correlation feature selection [38], and particle swarm opti-

mization [39] with correlation feature selection [38] these approaches are run

on sixteen datasets (UCI repository of machine learning database [40]). To

evaluate these approaches, Decision Tree [41], and näıve Bayes [42] classifi-

cation algorithms are used to measure the precision, recall and accuracy for

each approach and each run .

1.5 Research Methodology

This section describes the research methodology that was followed.

• To conduct a literature of filter FS approaches for classification to identify

recent approaches in the area, and identify limitations of existing approaches.

• To develop a new filter FS approach using NIA and RSTDD to improve the

performance of FS for nominal, mixed and numerical datasets with different

characteristics.

• To develop an evaluation methodology for the new approach using the base-

line approach, known similar filter FS approaches, classification algorithms,

and datasets with different characteristics.

• To select nominal,mixed and numerical datasets with different number of fea-

tures, different number of objects and different number of classes. And then

conduct experiments based on the evaluation methodology by running de-

veloped approach, baseline approach and known similar filter FS approaches

on selected datasets. And we will use known classification algorithms to

evaluate these approaches.

• To analyze experiment’s results by comparing the results of developed ap-

proach with the baseline approach and known similar filter FS approaches.
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Number of selected features, performance of classification(accuracy,precision

and recall), and computational time are factors to consider for comparisons.

1.6 Organization of the Thesis

The remainder of this thesis is structures as follows:

Chapter 2: Background. Presents the basic concepts of classification and

feature selection.

Chapter 3: Literature Review. Reviews traditional related works in feature

selection, and focuses on current filter feature selection which combines the NIAs

and RSTDD.

Chapter 4: Proposed algorithm. Proposes new filter feature selection ap-

proach that improves the current BCS, and it develops new objective function

based on RSTDD and distinct values.

Chapter 5: Evaluation and Results. Examines the performance of our ap-

proach, and compared it to three other approaches. First approach is a baseline

of our approach (BCSFS). Genetic and particle swarm optimization with correla-

tion feature selection are the second and third approaches. Then, the results are

evaluated by decision tree and naive bayes classification algorithms, and results

are discussed.

Chapter 6: Conclusion. It discusses the conclusions of thesis, limitations and

assumptions, and also suggests some possible future work.



Chapter 2

Background

This chapter aims to provide a general discussion of the concepts needed to under-

stand the rest of the thesis. It covers basic concepts of classification and feature

selection.

2.1 Classification

The main goal of classification is to classify unseen objects to predefined classes as

accurately as possible [2–4]. Classification algorithm uses a group of objects which

is each object is classified into classes to build classification model. Classification

model takes the values of the features of an unseen object as input and then

predicts the classes of these objects [2–4]. The following sections review the data

representation, learning and evaluation, classification performance, classification

algorithms, and main challenge of classification.

2.1.1 Data Representation

This research focuses on the structured dataset as representation system for clas-

sification. Numbers of attributes are defined as properties of an object to help

understand and extract hidden useful information from datasets. These attributes

are called features. A structured dataset is represented as one database table,

where each column represents a particular feature, and every row is an object,

See Figure 2.1 [4]. Each object is represented in a vector of values, each value

11
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represents a feature. And there are two types of features: First type is nominal

or categorical features that have small number of possible values. Second type is

Numerical features that takes any values (can be real or integer numbers.)[4]. In

Figure 2.1, Rank and Job are nominal features. Age is a numerical feature. Ac-

cording to types of features in datasets, datasets are categorized to three groups:

First group is nominal datasets which their features is nominal. Second group is

numerical datasets which their features is numerical. Last group is mixed datasets

which some of their features is nominal and other features is numerical features

[40].

 

Figure 2.1: Example of Dataset.

2.1.2 Learning and Evaluation

To build classification model, classification algorithms need a dataset in which

each object is classified into classes. In other words, each object has a set of

features, one of them is class [4, 5]. For example in Figure 2.1, each object has five

features, but the job feature is class for each object. The given dataset is divided

into training and test sets, training set is used to build (learn) the classification

model and test set is used to evaluate it.
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2.1.3 Classification Performance

Accuracy is one important measure that is used to evaluate the performance of

classification [4]. To calculate the classification accuracy, it is applied on test set,

then count the number of correct predictions and divide it by the total number of

predictions, multiply it by 100 to convert it into a percentage. But the accuracy

is not enough to evaluate the performance in some datasets, especially when most

objects are assigned to specific class. For this, we need another measures to eval-

uate a classification performance for each class in dataset in addition to accuracy

that evaluates the overall correctness of the classifier [43, 44].

Precision and Recall are very efficient to evaluate the classification model for each

class when the accuracy is high. Precision is a fraction of correct predictions for

specific class from the total number of predictions (Error + Correct) for the same

class. Recall (also known as sensitivity) is a fraction of correct predictions for

the specific class from the total number of objects that belong to the same class

[43, 44].

Most classification algorithms summarize the results in confusion matrix [45]. It

contains information about predicted and actual classifications. Table 2.1 shows

the confusion matrix for two classes (A and B), and the entries as follows.

 
 Predicted 

Class A Class B 

Actual 
Class A TA FB 

Class B FA TB 

Table 2.1: Confusion Matrix.

TA: the number of correct predictions that an object is A.

FA: the number of incorrect of predictions that an object is A.

TB: the number of correct predictions that an object is B.

FB: the number of incorrect predictions that an object is B.

Accuracy(Overall) =
TA+ TB

TA+ FB + FA+ TB
(2.1)
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Precision(A) =
TA

TA+ FA
(2.2)

Recall(A) =
TA

TA+ FB
(2.3)

2.1.4 Classification Algorithms

Many classification algorithms have been proposed to build the classification model.

Decision Tree and näıve Bayes two different types of classification algorithms that

are most common[3, 4, 46]. This section reviews briefly the decision tree and näıve

Bayes classification algorithms that will be used in this thesis to measure the clas-

sification performance, For more details about Decision Tree and näıve Bayes, you

can visit [46].

2.1.4.1 Decision Tree

Decision Tree (DT) is a method for approximating discrete valued functions [4]

and it summarizes training set in the form of a decision tree. Nodes in the tree

correspond to features, branches to their associated values, and leaves of the tree

correspond to classes. To classify a new instance, one simply examines the features

tested at the nodes of the tree and follows the branches corresponding to their

observed values in the instance. Upon reaching a leaf, the process terminates, and

the class at the leaf is assigned to the instance [3].

To build a DT from training data, DT’s algorithms use greedy approach to search

over features using a certain criterion such as gain and gini index to evaluate

the features in order to select the best feature for splitting the input training

set(objects) into smaller subsets to create a tree of rules. In more details, if the

subsets of objects belong to the same class, then the node is class label. But if the

subsets of objects belong to more than one class, then split it to smaller subsets.

Recursively apply these procedures to each subset until a stop criterion is met

[41, 46].
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2.1.4.2 Näıve Bayes

Näıve Bayes (NB) is a simple probabilistic classification algorithm that uses Bayes

theorem with independent assumption between the features to predict class mem-

bership probabilities. It calculates the probability of unseen instance based on each

class, then it assigns this instance to the class with the highest probability. Learn-

ing with the NB is straightforward and involves simply estimating the probabilities

from the training set. NB is easy to construct and efficient for huge datasets, but it

is weak when applied on datasets that have many redundant features, this means,

NB is a good classification algorithm to evaluate the FS approaches over redundant

features [3, 42].

2.2 Feature Selection

FS studies how to select minimum subset of features from the original set while

keeping high accuracy in representing the original features in short computational

time [2, 3]. according to[3] FS is ” process that chooses an optimal subset of

features according to a certain criterion”. This section reviews some concepts that

is related to FS. The Following section reviews general FS steps, filter FS, and

wrapper FS.

2.2.1 General Feature Selection Steps

In general, FS algorithms (approaches) include five basic steps: Initial subset,

generation strategy, objective function, stopping criterion, and validation step

[3, 10]. See figure 2.2. Generation strategy starts from initial step to generate

new subset of features for objective function (evaluation step) to measure the

quality of it. Algorithm continues generating new candidate subsets of features

until stopping criterion is met. FS steps are discussed as follows.

Initialization: Any FS algorithm (approach) starts from initial subset or subsets

of features. There are three types of initial subset. First, empty subset. Second,

full subset. And the last is random subset [3, 10].

Search Strategy: is responsible to generate new candidate subset of features to

objective function. It starts from one of the initial subsets: Empty subset, features
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Figure 2.2: General FS steps [8].

are added. Full subset, features are removed. Random subset, features are added,

or removed or created randomly. Complete, random and heuristic are types to

generate the next candidate subset of features [3, 10].

• Complete Search: Searches for all combinations of subsets of features. If the

number of features in search space is n, this means the number of subsets

of features is 2n. But this type of search is very expensive and sometimes is

impractical.

• Heuristic Search: Makes smart choices to select the near optimal subset

without searching in all combination of features. It is fast, but it does find

the optimal solution.

• Meta-heuristics Search: Like heuristic Search, but Meta-heuristics Search

has faster, and more efficient convergence compared to heuristic Search.

Objective Function: is responsible to determine the quality of subsets of fea-

tures. This function is very important in any FS algorithms, because it guides the

algorithm to find the optimal subset of features.

Stopping criterion: is responsible to stop the algorithm when the candidate of

subset features met the objective function (found the best solution), or the number

of iterations reached the maximum [10? ]
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Validation: This step is not a part of FS algorithm to search for subset of features.

It is responsible to validate/evaluate the FS algorithm by validating the selected

subset of features on the test set [3]. The results are compared with previous

results to determine the performance of algorithm [3].

All steps are important for FS approaches, but the search strategy, and objective

function are two main factors for determining the efficiency of FS approaches.

2.2.2 Filter and Wrapper approaches

According to objective function, FS approaches are generally categorized into filter

and wrapper approaches. Filter approaches select the feature subset independently

from any classification algorithms, and the subset of features are evaluated using

certain criterion such as dependency degree [11], distance measure [8] and infor-

mation measure[12]. In this type, objective function is indicator for classification

performance. FOCUS [47], RELIEF[48], LVF[38], Greedy search[49] are filter FS

approaches. Also, [18–26] are filter FS approaches that combine NIAs with rough

set theory. These approaches will be reviewed in next chapter.

Wrapper approaches include classification algorithm as part of the objective func-

tion to evaluate the selected feature subsets. In other words, classification algo-

rithm performance used objective function to evaluate the subset of features [2, 3].

Sequential forward selection[50], Sequential backward selection[51], linear forward

selection[52], PSO[53], ACO[54] are wrapper FS approaches.

Wrapper approaches give high classification accuracy on a particular classification

algorithm, because it mixed between the classification algorithm and objective

function. But it is very expensive, because each evaluation includes a training

processes and testing processes of the classification algorithm[55]. While filter

approaches are much faster and more general than wrapper approaches [2, 3].

This thesis focuses on filter approaches.

2.3 Summary

This chapter presented some of the essential background concepts for FS and

classification, as a basis for the work in this thesis.
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The next chapter reviews typical related works in filter FS.



Chapter 3

Literature Review

This chapter reviews related works in filter feature selection for classification. In

general, dimensionality reduction approaches can be categorized into feature ex-

traction (transformation) and FS [1]. Feature extraction approaches apply a trans-

formation to dataset to project it into a new feature space with lower dimension,

and they need to make mapping between the original feature space to a new feature

space [1, 56]. Principle Component Analysis (PCA)[57] and Canonical Correlation

Analysis (CCA)[58] are examples of feature extraction. Where as FS, which the

work of this thesis focuses on, selects a subset of features from the original dataset

without any transformation and mapping. FS approaches are divided into two

main groups: First, ranked approaches which failed to find the nearest optimal fea-

ture subset. Second, feature subset approaches which are divided to three groups:

Complete, heuristic, and meta-heuristics approaches. Meta-heuristics approaches

are capable of finding the nearest optimal feature subset in shortest computational

time. NIAs are a very efficient type of meta-heuristics for FS’s search strategy.

This thesis aims to develop a new filter FS based on NIA and RSTDD, for this,

we focus on filter FS approaches that use NIA in their search strategy and use

RSTDD in their objective function. Appendix D shows the map of classifications

of dimensionality reduction.

3.1 Introduction

In general, chapter two reviews the classification and FS, and it shows the im-

portance of FS for classification. A lot of work of FS has been developed from

19
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70’s , and most of these FS approaches try to achieve three goals: First is feature

reduction which means select the minimum number of features without significant

reduction of classification performance. Second is short computational time. And

the last to support different data characteristics, which means the FS is efficient

for nominal, mixed, and numerical datasets with different number of features,

different number of objects, different number of classes, and different areas [3].

FS approaches are categorized into two groups [59, 60]: First is ranked approaches

which depend on single feature evaluation to select the best feature subsets.

Ranked approaches measure the score (quality) of each feature, and then these

features are ranked according to their score to select the best subset. Relief is a

ranked approach [48]. The main problem in these approaches, is that the relevant

features cannot be evaluated independently from the other features, therefore the

subset of top ranked features, may include high number of irrelevant and redun-

dant features. While the combination of different ranked features may contain

low number of irrelevant and redundant features [59, 61–63]. This means, ranked

approaches are not capable to achieve the optimal feature reduction, but they are

cheap. To avoid this problem, many FS are implemented with feature subset eval-

uation instead of single feature evaluation, these approaches are a second group

which is a feature subset approaches. Also feature subset approaches are catego-

rized into three groups based on search strategy that used in these approaches to

complete, heuristic, and meta-heuristics approaches [60].

Complete approaches search for all possible feature subsets to find the optimal

feature subset, this means, the number of feature subsets needs to be generated

is 2n, where n is the number of features. These approaches achieve the feature

reduction, but they are very expensive (exponential time), practically impossible

[3, 60, 64]. Focus approach is example of complete approaches [47]. Heuristic Ap-

proaches try to find the best feature subset without searching in all possible feature

subsets to reduce the computational time compared to complete approaches. The

complexity time of heuristic is quadratic, but the complete is exponential [60, 64].

In general, heuristic approaches apply local changes to the current feature subset

to reach to best feature subset. The main drawbacks of heuristic approaches are

they do not guarantee the optimal feature subsets, and it stuck to the local op-

timal which mean the neighbor solutions is worse than the current solution, and

the current solution is worse than global optimum [3, 60]. Greedy Search [49] is

example of heuristic approaches which are like ranked approaches do not achieve
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the feature reduction. Recently, meta-heuristic approaches show more desirable

results compared to previous approaches.

FS is optimization problem which is the problem of finding the best solution from

all feasible solutions [6], meta-heuristics algorithms are very efficient for this type

of problems [13, 14]. Meta-heuristics algorithms represent a group of approxi-

mate techniques that aim to provide good solutions computed in a reasonable

time for solving optimization problems, but does not guarantee the optimality

of the obtained solutions [13, 14]. In general, meta-heuristics algorithms have

more efficient, and fast convergence compared to heuristic algorithms [14]. NIAs

are powerful type of meta-heuristics algorithms which improve the population of

solutions in each iteration, and they are developed based on characteristics of bio-

logical systems like ants, bee, swarm of birds to find the source of food, and cuckoo

reproduction, therefore some of NIAs can be called biology inspired[65, 66]. The

main idea in these systems, agents/particles corporate with each other by an indi-

rect communication medium to discover the food sources, or achieve some things

[25]. The advantages of NIAs: They may incorporate mechanisms to avoid getting

trapped in local optima. They can be easily implemented. Also these algorithms

are able to find best/optimal solution in a reasonable time due to efficient conver-

gence [13].

Recently, many of filter FS that combines NIAs with RSTDD are widely used

to develop their objective function such as [18–26], because RSTDD is efficient,

easy to implement, no need to any additional information about data, and cheap

compared to mutual information and entropy methods [30, 73]. Following sections

review nine filter FS that combine NIA with RSTDD [18–26], in addition to two

FS approaches that use NIA without RSTDD [31, 32]. To easy reviewing these

approaches, firstly, RSTDD is reviewed, then ten approaches are revived according

to the NIA which is used in them.

3.2 Rough Set Theory

RST was developed by Zdzislaw Pawlak in the early 1982s [15] as a mathemat-

ical tool that deals with classificatory analysis of data table(structured dataset).

RSTDD and positive region are two important issues in data analysis to dis-

cover the dependency between the feature subsets and class labels. Positive region
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(POSp(Q)) contain all objects that can be classified to classes of Q using infor-

mation in P. The RSTDD can be defined in equation 3.1 [17, 35, 67]. Appendix

A contain more details about RST.

γP (Q) =
|posP (Q)|
|U |

(3.1)

Where |U | is the total number of objects, |posP (Q)| is the number of objects in a

positive region, and γP (Q) is the dependency between feature subset p and classes

Q.

In the literature there are two frequently used objective functions that use RSTDD

and balancing it with the number of selected features (size of feature subset).

Jensen et al.[19] proposed the first one (equation 3.2) as follows:

Objectivefunction(P ) = γP (Q) ∗ |C| − |P |
|c|

(3.2)

Also Xiangyang Wang et al. [21] proposed a second multi objective objective

function(equation 3.3) as follows:

Objectivefunction(P ) = α ∗ γP (Q) + (1− α) ∗ |C| − |P |
|C|

(3.3)

Where |C| is the total features, |P | is the number of selected features, Q is class,

and γP (Q) is the dependency degree between feature subset and class label Q,

α belong to [0,1] and it is a parameter to control the importance of dependency

degree and subset size. Normally, the value of α is 0.9 to give most importance to

the dependency than the size of subset[21].

RSTDD is an indicator for classification performance, it gives the same impor-

tance to all feature subsets that have the same dependency degree, and this is not

correct for all feature subsets for classification algorithm. In general, features that

have more frequent values and higher relevance are more desirable to classification

algorithms, it helps these algorithms to build a classification model in easier and

faster way, and better classification performance[33]. For these reasons, RSTDD

is efficient for nominal datasets that their features have roughly the small set of

values, but inefficient for mixed and numerical datasets that have some features
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with large and different number of frequent values, and low frequent values in

some other features [1]. RSTDD measures the dependency between the feature

subset and class labels without measuring the frequent values. Measuring the de-

pendency in nominal datasets is enough because their features have high frequent

values, but in mixed and numerical datasets, it is necessary to measure the fre-

quent values in addition to dependency, because there is a big difference in number

of frequent values between features in each dataset, and the number of frequent

values in most numerical features is very low which helps to increase the value of

dependency degree between the subset and class label regardless of the average of

frequent values in these subsets.

Finally, RSTDD is inefficient for mixed and numerical datasets, one goal of this

thesis is to develop new objective function based on RSTDD with improved effi-

ciency for nominal, mixed, and numerical datasets. This means approaches [18–26]

that use RSTDD in their objective function are inefficient for mixed and numerical

datasets.

Before reviewing approaches [18–26] according to the search strategy (NIAs), we

define NIAs’ search mechanisms which plays an important role in the effective-

ness of each NIA. Local, global, and hybrid search are mechanisms that are used

in NIAs to update the population of feature subsets to solve the FS [68]. Local

Search aims to find the best possible solution to a problem (Global Optimum) by

iteratively moving from current solution to better neighbor solution. But some-

times, current solution is better than all neighbors’ solutions, and it is worse than

global optimum. In this case, the local search suffers from local optimum problem

and stops searching. The advantage of local search is that it is relatively efficient

(fast), but it is affected by poor initial solutions, and it does not guarantee the

global convergence [14, 68]. Global Search searches for the candidate solution in

all the search space until it finds the best solution or reaches maximum iterations.

But it is slow [14, 68]. Hybrid Search aims to increase the convergence more

efficiency (to avoid be trapped in local optimum), and to guarantee the global

convergence as soon as possible by using global search to generate initial solutions

for local search [68].
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3.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a NIA presented by Dorigo et al in 1992 [69],

it simulates the behavior of real ants that use chemical material called pheromone

to find the shortest path between their nest and the food source. And when each

ant finds the food it returns to nest laying down a pheromone trail that evaporate

over time, then each ant follows the path that has large amount of pheromone[69].

ACO uses graph to represent the search space, features are represented as nodes,

and edges between the nodes determine the best next connected feature. Every

ant selects one node then uses a suitable method (Heuristic measures) and amount

of pheromone material on each connected edge to select the best connected node

to construct the population of candidate feature subsets [69].

We found three approaches in the literature for feature selection based on ACO

and RST. The first approach is Ant Colony Optimization based on Feature Se-

lection in Rough Set Theory (ACOFS)[20]. An efficient Ant Colony Optimization

approach to Attribute Reduction in rough Set theory (ACOAR)[18] is the sec-

ond approach. The last approach is Finding Rough Set Reducts with Ant Colony

Optimization(AntRSAR) [19].

The three approaches update the pheromone trails on each edge after constructing

each solution, but in ACOAR the pheromone values are limited between the upper

and lower trail limits to increase the efficiency of algorithm.

The heuristic measure in the AntRSAR approach uses entropy information, but

ACOFS and ACOAR use RSTDD which makes ACOFS and ACOAR cost less

compared to AntRSAR, because the entropy information is expensive compared

to RSTDD.

In general, ACO has some drawbacks. First, complex implementation and slow

convergence, because it uses graph to represent the search space [13, 14]. Complex

implementation and slow convergence means, these approaches that use ACO are

very expensive, and not suitable for large datasets (maximum size of datasets that

are used in experiments of these approaches is 69 features [18–20]).
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3.4 Particle Swarm Optimization

Particle swarm optimization (PSO) is a NIA developed by Kennedy and Eberhart

[70]. In nature, PSO simulates the movements of a flock of birds around food

sources, a flock of birds moving over an area where they can smell a hidden source

of food. The one who is closest to the food tweets loudly, and the other birds tweet

around in its direction. This means the birds closer to the target tweets louder.

This work continues until one of the birds find the food [70, 71].

PSO uses Particles as birds to search for the best solution in search space which are

represented in binary representation. The position of each particle is a possible

solution and the best solution is the closest position of particle to the target

(food). Particles move in the search space to search for the best solution by

updating the position of each particle based on the experience of its own and its

neighboring particles. Each particle has three vectors, first vector represents the

current position, second one for the velocity of particle, and the last one represents

the best previous position that is called personal best (pbest). But the algorithm

stores the best solution in all particles in a vector called global best solution

(gbest) [70]. [21–23] are filter FS approaches that use PSO to generate population

of candidate feature subsets.

We found three approaches in the literature for solving FS using PSO and RSTDD,

the first is Feature selection based on Rough Sets and Particle Swarm Optimization

(PSORSFS) [21], the second is An Attribute Reduction of Rough Set Based on

PSO (ARRSBP) [22], and the last is supervised hybrid feature selection based on

PSO and rough sets for medical diagnosis (SPSO-RR) [23].

Xiangyang Wang, et al (PSORSFS) [21] added limitation to the particle velocity to

avoid local optima, and move the particle to near global optimal solution. Because

high velocity moves the particle far away from global optimal, and low velocity

causes the local optimal.

Hongyuan Shen, et al ARRSBP [22] changed the values of weight parameter from

0.1 to 0.9 to balance between the pbest and gbest in generations.

H. Hannah Inbara, et al (SPSO-RR) [23] developed two algorithms for medical

datasets. First, it combines the PSO and quick reduct based on dependency

degree. And second algorithm combines the PSO and relative reduct based on

relative dependency.
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In general, PSO is easy to implement, and cheap. But it has weak convergence,

trapped into local optimum when it is applied on large datasets (maximum size

of datasets that used in experiments of these approaches is 57 features) [70, 71].

Also PSO is affected by the poor initial solutions [71].

3.5 Artificial Bee Colony

Artificail Bee Colony(ABC) algorithm is a NIA that is inspired by the natural

foraging behavior of honey bees. ABC is proposed by Karaboga [72]. In nature

the colony consist of three types of bees, employed bees, onlooker bees, and scout

bees. The foraging process starts by scout bees that move randomly to discover

the food sources. When the scout bees find the food sources, they return to their

hive and then start dancing (Waggle dance) to share their information about the

quality of food sources with onlooker bees, then depending on this information

more bees are recruited (employed bees) to the richness food source, but if any

bee finds the food source is poor, the bees call scout bees to discover randomly

new source food and so on [72, 73].

The position of a food source represents a possible solution using binary repre-

sentation, and the nectar amount of food source considered as the quality of the

solution. Each bee tries to find the best solution. ABC combines the global search

and local search to find the best solution [72, 73]. The ABC algorithm starts with

the n scout bees that select randomly population of candidate solutions as initial

solutions. Then, these solutions are evaluated, and it selects the candidate solu-

tions that have maximum quality for local search, and the remaining for global

search to construct new population of candidate solutions. Then the quality of

each solution in new population is evaluated, if the algorithm gets the best solution

then the algorithm stops, otherwise it continues searching until it finds the best

solution or arrives to maximum number of iterations [72, 73]. [24–26]are filter FS

approaches use ABC to generate population of candidate feature subsets.

We found three approaches in the literature for solving FS using ABC and RSTDD,

the first is a Novel Discrete Artificial Bee Colony Algorithm for Rough Set based

fetaure Selection(NDABC) [24], and second is a Novel Rough Set Reduct Algo-

rithm for Medical Domain Based on Bee Colony Optimization BeeRSAR [25], and
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the last is an Independent Rough Set Theory Approach Hyprid with Artificial Bee

Colony Algorithm for Dimensionality Reduction (BeeIQR) [26].

Yurong Hu, et al. [24] combined ABC and RSTDD to solve FS in an efficient

way. This approach changed one feature by either adding one feature or removing

one randomly in local search, a major weakness of this approach. And it uses a

random mechanism in global search.

Suguna,et al [25, 26] proposed two approaches that are similar in all things except

the initial population started from feature core(Start from set of features) , but

[26] started randomly. In local search, more than one feature is randomly changed

with some criteria, and random strategy is used in global search.

In general, ABC is a very efficient algorithm that solves the local optimal problem

by using hybrid search mechanism. But the local search in this algorithm causes

slow convergence [27]. Also these approaches[24–26] are not suitable for large

datasets (maximum size of datasets that used in experiments of these approaches

is 69 features[24–26]).

3.6 Cuckoo Search

Cuckoo Search (CS) is a new and powerful NIA algorithm that was developed

by Yang and Deb in 2009[14]. CS is a search algorithm inspired by the breeding

behavior of cuckoos and L’evy flight behavior of some birds and fruit flies which

is a special case of random walks [28, 31, 32, 74]. The reproduction strategy for

Cuckoo is aggressive. Cuckoos use the nests of other host birds to lay their eggs

in, and rely on these birds for hosting the egg. Sometimes the other host birds

discover these strange eggs and they either throw these strange eggs or leave their

nest and build a new one. Cuckoos lay eggs that look like the pattern and color

of the native eggs to reduce the probability of discovering them. If the egg of the

cuckoo hatches first, then the cuckoo chick destroys all eggs in the nest to get all

the food that is provided by its host bird [28, 75].

Algorithmically, each nest represents a solution, CS aims to replace the ”not so

good” solution (nest) with a new one that is better. CS uses local and global

search (Hybrid search) to update the population of solutions, local search update
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the solutions that have highest quality, and the rest of solutions are replaced with

new solutions randomly in global search.

Many optimization problems in different domains are solved in by CS to achieve

improved efficiency, table 3.1 is repeated here from [76] to show some of these

applications for convince. For further details and applications, see [77].

Binary Cuckoo Search for feature selection [31, 87], and Binary Cuckoo Optimiza-

tion Algorithm for Feature Selection in High-Dimensional Datasets(BCOA) [32]

are two approaches that use BCS. But the first approach is a wrapper approach,

and the second is a filter approach. To the best of our knowledge, [31, 32] are the

only two FS approaches that use BCS alone in their search strategy. The following

paragraphs explain these two approaches in details.

Binary representation: Search space is modeled as a binary n-bit string, where

n is the number of features [31, 32]. BCS represents each nest as a binary vector,

where each 1 corresponds to a selected feature and 0 otherwise. This means each

nest represents a candidate solution, and each egg represents a feature.

Initialization strategy: Generating an initial population of n nests randomly by

initializing each nest with a vector of binary value. Both [31, 32] use this strategy

which does not cover all search space ( see section 4.3 for more details).

Objective Function: [31] uses Optimum-Path Forest (OPF) classification al-

gorithm [88] in its objective function. But BCOA[32] uses mutual information

(expensive[19]) in its objective function. This step is replaced by a new objective

function to develop a new filter FS approach (MBCSFS) to improve the compu-

tational time.

Local And Global Search Switching: Existing approaches use threshold value

(Value of objective function =25%) to control the nests that are used in local

search and global search. Nests that have a quality more than 25% are used for

local search, and the remaining nests for global search. But the threshold in [32]

is not clearly specified.

Local Search: BCS updates each nest that has a quality more than the predefined

threshold using Lévy Flights which is a main point of strength of CS. More details

on Lévy Flights can be found in appendix B. Both [31, 32] use Lévy Flights in

their local search.
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Authors Methods Task of CS/Application

Davar Giveki et.al[78] Modified Cuckoo Search
With SVM

To optimize two parameters C
and γ for SVM/ Classification

Miloš MADIĆ
et.al[79]

Cuckoo Search With Ar-
tificial Neural Networks

Surface Roughness Optimiza-
tion In CO2 Laser Cutting/
Laser cutting AISI 304 stainless
steel

Ivona et.al [80] Cuckoo Search Multilevel Image Thresholding
Selection/ Segmentation of im-
ages

M. Prakash et.al [81] Cuckoo Search Optimizing Job Scheduling /
Job Scheduling for Grid Com-
puting

Koffka Khan et.al [82] Cuckoo Search With
Neural Network

Optimizing Neural Network
Weights/ Compute Health and
Safety risk index for employees
using NSCS

Moe Moe Zaw et.al
[83]

Cuckoo Search Document Clustering/ Web
Document Clustering: 7 sector
benchmark data set

Akajit Saelim et.al
[84]

Modified Cuckoo Search Optimizing Path/ To locate
the best possible server in dis-
tributed systems

Rui Tang et.al [25] K-Means And Cuckoo
Search

Optimize K-Means/Clustering

Ehsan et.al [85] Improved Cuckoo
Search With Feed For-
ward Neural Network

Optimize Network Weights
And Convergence Rate Of
Cuckoo Search/ Classification
of Iris and breast cancer data
sets

Sean P. Walton [86] Modified Cuckoo Search Optimization Of Functions/
Applied to aerodynamic shape
optimization and mesh opti-
mization

D. Rodrigues et.al
[31, 87]

Binary Cuckoo Search Feature Selection/ Theft de-
tection in power distribution
systems for two datasets com-
mercial and industrial obtained
from a Brazilian electrical
power company

Mahmood
Moghadasian et.al
[32]

Binary Cuckoo Op-
timization Algorithm
for Feature Selection
in High-Dimensional
Datasets

Feature Selection/ Search for
feature subset on six medical
datasets

Table 3.1: Applications of CS in different domains[76, 77].
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Global Search: [31] uses the same technique in initial strategy to replace the

nests that have quality less than the a predefined threshold (25%). But the [32]

use Lévy Flights in its global search, this means [32] uses local search only to

update the population of solutions.

Stopping Criterion: The algorithm in this approach stops when the number

of iterations reaches the maximum predefined by the user. But the Stopping

Criterion in [32] is not clearly specified.

In their Evaluation:

[31] approach uses parameters as α =0.1, threshold =0.25, iteration=10, popula-

tion=30, and applies it on two small datasets obtained from a Brazilian electrical

power company. This approach has been compared with some NIAs such as: bi-

nary particle swarm optimization and Binary firefly algorithm [89]. Results show

that BCS is efficient for FS, and it achieved the maximum accuracy or the same

classifier accuracy as other algorithms. But BCS has been found the fastest.

[32] approach uses parameters as α =0.5 to 0.9, maximum number of itera-

tion=1000, and applies it on six numerical and medical datasets. K-Nearest

Neighbor (KNN) classification algorithm is selected to measure the classification

accuracy. Results show the BCOA achieves better feature reduction compared to

other approaches that are used in its evaluation, but its evaluation is not clearly

specified, such as the approaches that are used in comparisons.

In general, CS algorithm[28] is a new and powerful NIA, and it uses hybrid mecha-

nism search to find the optimal solution, while its local search is very efficient, not

trapped in local optimal, and its implementation is simple. Unfortunately, [31] is a

wrapper FS, and its BCS is inefficient for datasets that have more than 20 features

and the number of features in optimal features subset is less than 25% from total

features(Section 4.3 explains why). [32] is a filter approach that uses expensive

objective function(mutual information is expensive[19]), and it uses local search

without global search, this means the search mechanism of search algorithm that

is used in [32] is not hybrid mechanism, while the main efficient point for CS is

the hybrid mechanism[28].
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3.7 Comparison

This section shows the general comparison between ACO, PSO, ABC, and BCS for

FS. ACO is very complex compared to PSO, ABC, CS, because it uses graph repre-

sentation compared to other that use binary representation, and ACO needs more

parameters than other. This makes the ACO most expensive. PSO, ABC, and

BCS use binary representation which makes the implementation of them mostly

cheap. The convergence of ABC and BCS is more efficient compared to ACO

and PSO, because the ABC and CS use hybrid search mechanism. But the CS

has more efficient convergence compared to ABC which its local search is very

weak compared to CS that use least number of parameters compared to other.

This mean, CS has fastest, most efficient convergence, easiest implementation,

and needs less parameters compared to other, and according to my knowledge, No

filter FS that use BCS is available.

Unfortunately, approaches [18–26, 31] that are reviewed in this chapter are not

efficient for datasets which have more than 70 features in best case (the number of

features is determined according to experiments of [18–26]) . Also they [18–26] are

not efficient for mixed and numerical datasets because they use RSTDD in their

objective function. Also BCS approach[31] is expensive because it is a wrapper

approach. But there is a potential to improve the BCS that is used in them to

become more efficient and fast by developing new filter FS.

3.8 Summary

This chapter reviewed the related works for filter Feature Selection(FS), and it

focuses on filter FS that combines the RSTDD and NIA.

Ranked and feature subset are types of FS approaches, ranked approaches are

cheap, but they failed to achieve the feature reduction. In feature subset FS ,

there are three types: Complete approaches that achieve feature reduction, but

they are very expensive. Heuristic approaches are cheap but they do not achieve

feature reduction. Recently, meta-heuristics approaches are cheap and mostly

achieve feature reduction.

NIAs are efficient type of meta-heuristics algorithms, ACO, PSO, ABC are NIAs

that are used in many filter FS approaches. ACO approaches are very expensive
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and complex, PSO and ABC are cheap and easy to implement compared to ACO,

but ABC has more efficient convergence than PSO, because ABC uses hybrid

search mechanism to update the population of solutions, but the main drawbacks

of ABC its that it is weak local search. For this, many researchers use CS to solve

many optimization problems in several domains, because the CS use hybrid search

mechanism, and its local search is very strong. BCS is binary model of CS, and it

is used to solve FS.

BCS that is used in approach[31] has some of drawbacks, such as its inefficient for

datasets that have more than 20 features. But the performance of BCS can be

improved to increase the efficiency and speed of convergence.

The main limitation of the approaches are reviewed, first, they are efficient for

datasets that have less or equal 70 features in best case, and most of them that

used RSTDD in their objective function are inefficient for mixed and numerical

datasets.

Next chapter presents the proposed algorithm .



Chapter 4

Proposed Algorithm

This chapter proposes a new classification filter feature selection approach that

is called Modified Binary Cuckoo Search based on rough set theory for Feature

Selection (MBCSFS). MBCSFS improves the binary cuckoo search by developing

new initialization, global updating, and local updating, switching and termina-

tion mechanisms. Also MBCSFS develops new objective function to measure the

dependency between the combination of features and class labels using RSTDD,

and it measures the average number of distinct values of feature subsets. MBCSFS

aims to find the minimum feature subset without significant reduction in classifica-

tion performance with in best achievable computational time for nominal, mixed,

and numerical datasets with different sizes.

4.1 Introduction

FS for classification aims to minimize the number of features and maximize the

classification performance, for this FS is called multi objective problem [90]. Two

main factors are needed to develop filter FS approach. The first is a search strategy

to search in the search space for a candidate feature subsets, and the second is an

objective function responsible to evaluate these candidate feature subsets to find

the best subset that has less number of features, highest relevancy to class labels,

and highest frequent values . NIAs are generally efficient for searching [66], CS is

a new and a powerful NIA [28], and BCS is a binary version of the CS [31, 32].

33
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In the literature, filter FS approaches especially that combine NIAs and use

RSTDD failed to perfrom well in many datasets, that are mixed and numerical

datasets, and datasets that have more than 76 features [18–26]. BCS algorithm

used in [31] is a good search algorithm for datasets which have less than 20 fea-

tures, see section 4.3 . But there is a potential to improve the convergence of BCS

algorithm to become faster, and more efficient for datasets that have more than

20 features (experiments in chapter 5 prove modified BCS is more efficient up to

617 features).

MBCSFS is a new classification filter FS approach that has the following contri-

butions:

• According to my knowledge, MBCSFS is the first classification filter FS

approach that uses BCS and RSTDD.

• Developed a new objective function that uses RSTDD and number of dis-

tinct values to achieve improved efficiency for nominal, mixed, and numerical

datasets.

• Improving the BCS

– New initialization and new global search mechanisms to speed the con-

vergence, and guarantee the global convergence.

– New local search to decrease the number of iterations needed to find the

global optimal solution, and to increase the chance to find this solution.

– New switching mechanism: guarantee the local and global search in

each iteration to increase the efficiency of convergence.

– New termination mechanism to achieve improved computational time

over the baseline BCSFS.

The pseudo code of Basic BCS with the traditional objective function [19](BCSFS)

is shown in algorithm 4.1. The main difference between the existing approach that

used BCS [31] and the algorithm 4.1, is the objective function shown in step 3.1

in this algorithm. BCSFS is described as the baseline to test the performance of

the newly proposed algorithms (MBCSFS).

The remainder of this chapter is organized as follows. The second section presents

the new objective function. The third section describes the new initialization
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 Input: 

 Trainingset 

 Number of nests n.  

 Value of Pa .// To control of local and global search 

 Number of maximum iteration T. 

Output: optimal feature subset g_best. 

Step 1: Initialize the population of solutions by random method. 

Step 2: t=1. 

Step 3: Repeat 

  Step 3.1: Evaluate the population (n nests/ solutions) by equation (3.2) 

  Step 3.2: Sort the population of candidate solutions descending  

     according to objective function. 

 Step 3.3: if g_best< first solution, then g_best=first solution 

 Step 3.4: (Global Search) Select the worst nests (solutions) which their quality are 

                                less than Pa (0.25)  and replace them to new solutions randomly. 

 Step 3.5: (Local Search) Select the best nests (remaining nests/solutions), 

     and update them using L´evy flights.      

Step 4: t=t+1. 

Step 5: Until (t > T). 

Step 6: Output g_best.   

 

Algorithm 4.1: Pseudo Code of Basic BCS with traditional Objective func-
tion [19] (BCSFS).

mechanism. New updating mechanisms are presented in the fourth section. New

stopping criterion mechanism is described in fifth section. The sixth section pro-

vides summary of this chapter.

4.2 New Objective Function

In general, feature subset that has high relevancy to class labels, and high frequent

values in its features, helps to increase the classification performance in many

classification algorithms [33]. High frequent values means the chance to repeat

these values which are used to build classification model in future is high, but the

high frequent values alone is not enough to give a good indicator for classification
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performance, because the dependency between the feature subset and class label

may be low. RSTDD is good theory to measure the dependency between the

feature subset and class labels, but it is not enough alone as a good indicator

for classification performance in all datasets especially datasets that have low and

different frequent values(Mixed and numerical datasets).

Objective functions [19, 27] that use RSTDD are good when they are applied on

nominal datasets, or the datasets which have the same number of frequent values.

But RSTDD is not efficient when applied on mixed and numerical datasets which

their features have number of different frequent values.

Therefore it is necessary to develop a new efficient objective function that is capa-

ble to evaluate the feature subset by balancing between three objectives (frequent

values, dependency degree, and number of selected features). We give Three Ob-

jectives and Global (3OG) name for this objective function. We develop 3OG

objective function in the following sections:

4.2.1 Frequent values

Feature has high frequent values, means the number of distinct values in this

feature is low. We use the number of distinct values and total number of objects

to calculate the percentage of distinct values in each feature, and this is indicator

for frequent values, see equation 4.1. This equation gives low percentage when the

frequent values is high. For example, ZOO dataset [40] has 100 objects, its animal

name feature has 100 values, and eggs feature has two values. Eggs feature has high

frequent values, equation 4.1 gives 2% as a percentage of distinct values for eggs

feature. But the frequent values of animal name feature is very low (no frequent

values), and the result of equation 4.1 for animal name feature is 1. Remember

the relationship between the frequent values and equation 4.1 is inverse.

Distinct%(R) =
|Distinct values(R)|

|Objects|
(4.1)

Where R is a subset of features, distinct values(R) is the average of number of

distinct values for R features, and objects is the number of total objects in dataset.



Chapter 4. Proposed Algorithm 37

4.2.2 Dependency Degree

We use RSTDD (equation 3.1) to measure the dependency between the feature

subset and class labels.

4.2.3 Balancing between the Percentage of Distinct Values

and Dependency Degree

In general, high dependency degree is a good indicator for relevancy between the

feature subset and class label. Low distinct percentage for feature subset is a

good indicator for high frequent values. In other words, feature subset which has

maximum dependency degree and minimum unique values percentage is desirable

for classification algorithms [33]. This means, the dependency degree is close to

one (100%) and percentage of unique values is close to zero. We develop equation

4.2 to balance between them.

Quality%(R) = DependencyDegree%(R)− UniqueV alues%(R) (4.2)

Equation 4.2 gives high quality when the feature subset is more desirable for clas-

sification algorithms. For example, in Zoo dataset, assume there are two feature

subsets. First subset is {Animal name, aquatic, domestic}, and distinct % for

it is 34%, and dependency degree is 100%Ṡecond subset is {hair, milk, predator,

backbone, venomous} and average of distinct % for it is 2%, and dependency

degree is 96%. As dependency degree, first subset is the best, because it has

higher dependency degree compared to second. But when we measure the classifi-

cation accuracy of both subsets using decision tree J48 in Weka, the accuracy for

first subset is 43%, and 93% for second subset. This means the second subset is

better than first subset, because the second subset has high frequent values and

high dependency degree. Dependency degree (first subset) gives bad indicator

for classification algorithm (Decision tree J48), because it has low frequent values

compared to second subset.

When applying our equation 4.2 for both subsets, quality (first subset) is 100%

- 34%=66%, but the quality (second subset) =96%-2%=94%. As equation 4.2,

second subset achieves better classification accuracy compared to the first subset.
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4.2.4 Balancing Between the Quality and Number of Se-

lected Features

FS is multi objective problem, maximum classification performance, and minimum

number of selected features are objectives of FS. Equation 4.2 achieves the first

objective only, now we modify this equation to achieve two objectives, see equation

4.3.

Quality(R) = Equation4.2 ∗ |C| − |R|
|C|

(4.3)

Where C is the number of available features, R is the number of selected features.

The idea of this balancing is taken from equation 3.2.

Following sections explain how the BCS is improved to achieve faster global con-

vergence.

4.3 New Initialization Mechanisms

In BCS [31], in its initialization strategy, each solution (or nest) is randomly ini-

tialized, as shown in pseudo code 4.1. Given its binary selection, from a search

space, the probability of every feature belonging successfully to the selected fea-

tures category for search has a 50% chance of being selected [60]. The aim is to

maximize the number of different features, to cover a wide range from across the

search space, that are selected for each solution search. A good initialization strat-

egy is, thus, one capable of generating initial nests with as many different number

of features across the full range as possible, such that the selected features for the

search space cover most of the possible numbers of selected features. For example,

assume the total number of features in a search space is 50, this means, the possi-

ble number of features to select for the search ideally should be from any of 0 to

50. A good initialization strategy is one that allows selecting most of the possible

numbers of selected features from across the range from 0 to 50, not one that just

perhaps centers its selection of features from around 20-30 of the search space for

example.

However, the pseudo code in 4.1 does not guarantee to generate the most pos-

sible numbers of selected features, to cover a wide range, from across the search
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space. To understand the reason behind that, let’s discuss the probability theory

of this pseudo code (Traditional initialization strategy). The number of successes

in a sequence of n (total number of features) independent selected or not selected

experiments is the binomial distribution [60], with each success has probability p

(50%), and the n (in our case is the total number of features) play a main role in

determining the probability of numbers of successes(selected features). The prob-

ability of getting exactly k successes in n trials is given by the probability mass

function. Figure 4.1 shows some examples of the probability mass function, first

example ( n=9 features) shows the initial strategy has a good chance to cover most

possible numbers of selected features. But in the second example(n=20 features)

show the probability of generating feature subsets that have less than four features

or more than 16 features is close to zero. While the third example(n=33) shows the

probability of generating feature subsets that have less than 10 features or more

than 25 features is close to zero. And in the last example(n=90 features), feature

subsets which have less than 30 features or more than 60 features have probability

close to zero to select in the initial strategy. In general, Binomial distribution

shows the probability is very small to select the feature subsets with a number of

features less than 25% or more than 75% of total number of features that is more

than 20. In other words, this initialization strategy misses the small and large

optimal feature subsets. Also the experiments in chapter 5 shows similar results,

table 5.4 in chapter 5 shows the smallest feature subset that can be selected via

this initialization strategy with different number of features.

 For nest=1 to population size do 

    For egg=0 to totalFeatures-1 do 

     Solution [nest] [egg] =random (0, 1) // 1 means selected, 0 means removed 

 

Pseudo code 4.1: Initialization Mechanism for BCSFS .

This strategy does not help the BCS to cover most the the search space (cover most

of the possible numbers of selected features), and this causes weak convergence. To

investigate the initialization strategy in BCS for FS, new mechanism that divides

the initialization strategy to three parts is proposed to increase the efficiency of

convergence and speed of BCS. In other words, the main goal of the splitting is
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Figure 4.1: Probability of Getting Exactly Number of Selected Features in
Different n Total Number of Features (Probability Mass Function).

to increase the chance to cover most of the possible numbers of selected features,

see figure 4.2, and algorithm 4.3. Nests/solutions are split equally to the following

parts:

Small Part: It aims to generate feature subsets that have number of selected

around the 25% of the available features. This helps to find optimal solutions that

have a small size. Small initialization consists of three steps: First, start from

empty set. Second, select randomly number “s” between one and half number

of the available features. Third, select randomly “s” of feature from all available

features, then add them to empty set. In other words, this part focuses on selecting

a number of selected features between 1 and half of the total number of features,

according to binomial distribution, the possible numbers of selected features that

have around the quarter of available features is greater than others.

Medium Part This mechanism is able to reach and search the area of the feature

subsets with medium size. This helps to find the optimal solutions that have

a medium size. Also this mechanism starts from an empty set. Then selects

randomly features from all available features. Then adds this features to the empty
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Figure 4.2: Probability Mass Function of New Initialization Mechanism.

set. We see this initialization focuses on the feature subsets that have around half

number of available features. This part is same as the traditional initialization

strategy, see figure 4.1 that shows the possible numbers of selected features that

have around the half number of available features is greater than others.

Large Part: This mechanism is capable of searching for the feature subsets that

are selected close to the number of available features. This helps to find the

optimal solutions that have around 75% of number of available features. Large

initialization consists of three steps: First, Start from full set. Second, select

random number “s” between the one and half the number of available features,

then select randomly ”s”’ features. Third, remove these features from full set.

4.4 New Updating Mechanisms

In general, local and global search are two mechanisms that are used to update

the population of solutions. Local search aims to improve the current solutions by

applying small modifications to them in the hope of finding a better one (global

optimal) in shorter computation time. But this mechanism (local search) may be

unable to prove global optimality, because the initial solutions affect it. Global

search does not depend on the initial solutions to find the global optimal, but it

needs a large number of iterations to find the global optimal if possible. Many
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algorithms combine local and global search in a new mechanism to avoid the

disadvantages of them [28, 72]. Global search is used to generate new candidate

solutions that are used by the local search to find global or nearest optimal solution.

CS is one of these algorithms, and it has very efficient local search mechanism

compared to other algorithms. BCS [31] as CS is efficient, but there is a potential to

improve the local and global search to BCS to become faster, and guarantee global

convergence. Following sections explain how to improve the updating mechanisms.

4.4.1 New Global Search

The main key of global search is to cover all search space as much as possible to

guarantee the global convergence, and increases the speed of it. But the global

search in BCS and some other approaches does not achieve this key when the

search space has more than 20 features, because it uses the same strategy that is

used in the initial strategy. Therefore it’s necessary to modify BCS’s global search

to as much of the search space as possible. As a new initialization mechanism,

the global search divides the searching into three parts: First part is small search

that focuses on feature subsets which size is around the 25% of available features.

Second part is medium search that is interested in the subsets which size is around

half number of the available features. Last part is large search that focuses on the

subsets which size is around the 75% from available features, see algorithm 4.3.

4.4.2 New Local Search

Local search applies small modifications to improve the current solutions to find

the local optimal solutions that hopefully lead to global optimal or nearest of it.

Remember, the goal of local search is speeding up the convergence to get the global

optimal solution in less number of iterations. BCS uses levy flight to move from

the current solution to a new one. Step size α in levy flight is main factor in local

search. The higher value of α means increasing the size of the modifications. The

value of α in BCS is fixed (Typically is 0.25), this means the modification is large

and same size in all iterations. Initially we need a large modification to increase

the diversity of feature subset, but if this size stays large, this causes going far away

from global optimal solution. To improve the local search, according to [85] our

approach modifies the value of α to become variable instead of being fixed. In the
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early generations, the size of modifications must be large enough to increase the

diversity of feature subsets, then the size of modifications must be decreased in the

following iterations to avoid going far from the optimal solutions (and reducing

the number of iterations) is needed to get the optimal subsets. Therefore, the

value of α decreases as the number of iterations increases.

4.4.3 Global versus local Ratio (New Switching Mecha-

nism)

BCS uses the probability P to control the nests for local and global search, Nests

that have quality (result of objective function) less than P are updated by global

search, and remaining nests are updated by local search. But there is a problem

in this mechanism. Assume the quality of all nests is more than P or less than P

in some iteration, this means, BCS become local or global search instead of hybrid

search. Please note, a hybrid search mechanism helps to increase the efficiency of

convergence. We develop a new switching mechanism that guarantees the local

and global search are run in each iteration to increase the chance to find the best

feature subset in a lesser number of iterations. New switching mechanism divides

the population into two parts: first part has the nests that have the highest quality

for local search, and the second part has the remaining nests for global search. The

ratio of these parts is determined by user.

4.5 New Stopping Criterion

It is very difficult to determine if the algorithm finds the optimal feature subset

or not, because the evaluation of feature subset depends on its size and quality.

For this reason, most existing approaches uses maximum iterations to stop the

algorithm. In most cases, this causes wasting much time without improving the

solutions. For example, maximum iteration is 20, third iteration finds the best

feature subset, and algorithm continues searching until it reaches maximum iter-

ations without improvement over the feature subset that was found in the third

iteration. This means, the time of seventeen iterations is wasted without any use.

Therefore, a new stopping criterion is proposed to stop the algorithm before reach-

ing maximum iterations, which is to stop if there was no chance to improve the
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best feature subset. The idea of this criterion is when in a number of successive

iterations(determined by user) there is no improvement in the best feature subset,

the algorithm stops. See algorithm 4.3.

Parameters in algorithm 4.3 has the same values as those used in our experiments.

 Input: 

 Trainingset 

 Number of nests n.  

 Number of maximum iteration T. 

 Number of successive iteration stopCriterion. 

 Local versus global ratio ratio. 

 Total number of features features 

 

Output: optimal feature subset g_best. 

 

Step 1: Divide equally the population of n nests into three parts to initialize them. 

           Step 1.1(Small part): Initialize each nest in this part by selecting randomly number of   

                          Features around the quarter of features. 

          Step 1.2(Medium part): Initialize each nest in this part by selecting randomly number of   

                          Features around the half of features. 

          Step 1.3(Large part): Initialize each nest in this part by selecting randomly number of   

                          features around the Three quarters of features. 

 

Step2: While (t<T or stop Criterion) do 

             Step 2.1: Evaluate each nest using 3OG objective function. 

             Step2.2: Sort the nests descending according to the value of 3OG. 

             Step 2.3: if (g_best< first nest) 

                            g_best=first nest 

             Step2.4: Divide the population of n nests according the predefined ratio  

                            into best nests and worst nests parts. 

                    Step2.4.1 (local search): Update the best nests using levy flight. 

                   Step 2.4.2(Global search): Update the worst nests as Step 1. 

             Step2.5: t=t+1. 

 

Step 3: Print g_best. 

 

 

Algorithm 4.3: Pseudo Code of Modified Binary Cuckoo Search based on
Rough Set Theory for Feature Selection(MBCSFS).
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4.6 Summary

The goal of this chapter is developing a new filter BCS for FS to improve the

performance of the basic BCS, which is expected to achieve feature reduction in

short computational time for different datasets with different characteristic (sizes,

types, classes). To achieve that goal, all main parts in BCS were modified to

speed up the convergence, guarantee the global convergence, and achieve efficient

evaluation for feature subsets.

New objective function based on RSTDD and distinct values was developed to

guide the MBCSFS to feature subsets that have minimum number of features

with maximum classification performance. This objective function calculates the

quality of feature subsets by balancing between the relevancy, frequent values

and their size. The function used RSTDD to measure the relevancy between the

selected features and class labels. And it used distinct values to measure the

frequent values of feature subsets.

This chapter shows the new initialization and new global search mechanisms.

MBCSFS divides the initialization and global search to three parts to make it

suitable for different sizes of datasets and guarantee the global convergence. First

part is for small optimal solution. Second part is for medium size. And the last

part is for large size of optimal solutions.

Also this chapter shows the modification of local search mechanism that aims to

increase the chance to find the global optimal solution in less number of iterations.

The main idea is that the size of modifications of the current solutions is decreasing

when the number of generations/iterations is increased.

New stopping criterion is proposed in this chapter to stop the algorithm when in

three successive iterations there is no improvement in the current solution. This

helps to avoid wasting time without any use.

Next chapter shows the design of the MBCSFS and experiments to evaluate it

(MBCSFS), and compares it to baseline, particle swarm optimization, and genetic

algorithms approaches.



Chapter 5

Evaluation and Results

In order to evaluate the performance of MBCSFS, thesis takes an empirical ap-

proach by comparing it to three filter FS approaches after applying them on 16

datasets.Thesis selects filter FS approaches in evaluation, because MBCSFS is a

filter approach.

This chapter aims to show the datasets and the methodology evaluation used

in the experiments, also it discusses the results of MBCSFS compared to base-

line(BCSFS), Genetic[37] with Correlation based on Feature Selection(CFS)[38],

and PSO[39] with CFS approaches.

5.1 Evaluation Methodology

This section describes the methodology we detected to evaluate our work.

5.1.1 Datasets selection

In order to evaluate the performance of MBCSFS, a group of experiments have

been run on sixteen datasets, where these datasets are taken from the University

of California at Irvine, known as the UCI data repository of machine learning

database [40]. UCI classifies datasets for classification according to types of their

features to three groups: First is nominal or categorical group which contains

28 datasets. Numerical or continuous is the second group which contains 137

46
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datasets, and the last is mixed group which has 37 datasets. These feature types

are illustrated in chapter 2.

Our approach aims to achieve feature reduction for nominal, mixed, and numerical

datasets with different characteristics especially different number of features in

addition to different number of objects and different number of classes. To evaluate

this, sixteen datasets that posses these characteristics are selected randomly as

follows: Four datasets from nominal group, four datasets from mixed group, and

eight datasets from numerical group. Table 5.1 shows these datasets and their

characteristics, each dataset is made available as a text file of a CSV format.

# Dataset Features Objects 
Class 

Values. 

Domain 

(Area) 

Nominal Datasets 

1 Congressional Voting Records 16 435 26 Social 

2 Mushroom 22 8124 2 Life 

3 Soybean(small) 35 386 19 Life 

4 Lung Cancer 56 32 3 Life 

Mixed Datasets 

5 Zoo 17 101 7 Life 

6 Hepatitis 19 155 2 Life 

7 German Credit Data 20 1000 2 Financial 

8 Dermatology 33 366 6 Life 

Numerical Datasets  

9 Breast Cancer Wisconsin (Original) 9 699 2 Life 

10 Wine 13 178 3 Physical 

11 Segment 19 1500 7 Computer 

12 Spectf 44 80 2 Life 

13 Connectionist Bench (Sonar) 60 208 2 Physical 

14 Libras Movement 90 360 15 N/A 

15 Musk (Version 1) 168 476 2 Physical 

16 ISOLET-test 617 1559 26 Computer 

Table 5.1: Datasets.

The following is a brief description of the datasets.

Congressional Voting Records. This dataset includes votes for each of the

U.S. houses of representatives’ congressmen on the 16 key votes identified by the

Congressional Quarterly Almanac (CQA). There are 16 nominal features in this

dataset, and each one has two distinct values. 435 objects are classified into two

classes, 168 objects for the first class, 267 objects for second class.

Mushroom. It contains records drawn from the audubon society field guide to

north American mushrooms. This dataset has 22 nominal features with different
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number of distinct values( from 2 to 12). Also it has 8124 objects that are classified

roughly to two classes.

Soybean(small). The task is to diagnose diseases in soybean plants. It has 35

nominal features that have from 1 to 7 distinct values. There are 47 objects which

are classified to 4 classes, one class has 17 objects and each class in remaining

classes has 10 objects.

Lung Cancer. It has 55 nominal features with 2 to 4 distinct values. There are

32 objects, 9 objects for first class, 23 objects for second class.

Zoo. It has 17 features (16 nominal features, 1 numerical feature). Most of

nominal features have two distinct values, but the numerical feature has 6 distinct

values. 101 objects are classified into seven classes, 41 objects for mammal class, 20

objects for bird class, 5 objects for reptile class, 13 objects for fish class, 4 objects

for amphibian class, 8 objects for insect class, and 10 objects for invertebrate class.

Hepatitis. It has 19 features, 7 numerical features which have from 30 to 85

distinct values, and 12 nominal features which have 2 distinct values. This dataset

has 155 objects, 32 objects belong to one class, and remaining objects belong to

second class.

German Credit Data. It has 7 numerical features which have 3 to 921 distinct

values, and 13 nominal features which have from 2 to 10 distinct values. 1001

objects are classified into two classes, 701 objects for good class, 300 objects for

bad class.

Dermatology. This dataset has 34 features, one feature is numerical which has

60 number of distinct values, and 33 nominal features which have distinct values

from 2 to 4. 366 objects are classified into six classes, 61 objects for first class,

112 objects for second class, 72 objects for third class, 52 for fourth class, 49 for

fifth class, and 20 objects for sixth class.

Breast Cancer Wisconsin. It is obtained from the university of wisconsin

hospitals, it has 9 numerical features, each one has ten distinct values. There are

699 objects, 458 objects classified into benign class, and the remaining objects are

classified into malignant class.

Wine. The data of this dataset are the results of a chemical analysis of wines

grown in the same region in Italy. It has 13 numerical features with different
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number of distinct values (from 39 to 133 unique values). There are 178 objects

in this dataset, 59 objects are classified into first class, 71 to second class, and 48

objects are classified into third class.

Segment. This dataset describes diagnosing of cardiac Single Proton Emission

Computed Tomography (SPECT) images. It has 44 numerical features with dif-

ferent number of unique values (from 21 to 36 distinct values). Also it has 80

objects which are classified equally into two classes.

SPECTf. This dataset describes diagnosing of cardiac Single Proton Emission

Computed Tomography (SPECT) images. It has 44 numerical features with dif-

ferent number of distinct values (from 21 to 36 distinct values). Also it has 80

objects which are classified equally into two classes.

Connectionist Bench (Sonar). It has 60 numerical features with different num-

ber of distinct values(from 109 to 208). Also it has 208 objects roughly classified

into two classes.

Libras Movement. It has 90 numerical features, and they have number of unique

values from 172 to 235. There are 360 objects classified equally into 15 classes.

Musk (Version 1). This dataset describes a set of 92 molecules of which 47

are judged by human experts to be musks and the remaining 45 molecules are

judged to be non-musks. The goal is to learn to predict whether new molecules

will be musks or non-musks. This dataset has 168 numerical features with different

number of distinct values(from 32 to 476). And it has 476 objects are classified

into two classes. 207 objects for first class, 269 for second class.

ISOLET-test. This dataset has 617 numerical features with different number of

distinct values (from 2 to 1420). Also it has 1559 objects are classified equally to

26 classes.

5.1.2 Evaluation method

To evaluate how effective FS is to a classification algorithms, two general evaluation

approaches are commonly employed: direct and indirect [3]. The direct approach

is used when the certain relevant features of a dataset are already known, and an

algorithm is directly evaluated for FS against them. However, often we do not
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have a prior knowledge of the relevant features about the datasets. Hence, most

FS approaches use the indirect approach which does not need any prior knowledge

about datasets. Indirect approach uses classification algorithms to measure the

classification performance (in item of accuracy, Precision, and recall) for selected

features [3, 18–26].

Two main comparisons are commonly used in the indirect approach to evaluate

the FS. First, before and after comparison which measures the classification per-

formance of all available features and for selected features. Second comparison,

checks the efficiency of a specific FS approach by comparing it to other FS ap-

proaches. Number of selected features or size reduction (size reduction is the

percentage between the number of removed features and all available features),

classification performance, and computational time are three factors that may be

used in this comparison. To examine whether FS is proper for different classifi-

cation algorithms, at least two different types of classification algorithms need to

be used to measure the classification performance. NB and DT are common algo-

rithms that are used to evaluate FS , they efficient and easy to construct [3]. More

details for these classification algorithms were provided in chapter 2 [3, 63, 91].

Given that we do not have prior knowledge of the datasets, the indirect evaluation

approach is appropriate for our case. We will employ the indirect evaluation com-

bined with ”before and after” comparison to compare our developed approach/al-

gorithm(MBCSFS) with the baseline approach(BCSFS). In addition, it will be

compared to genetic [37] with CFS [38] and PSO [39] with CFS [38]. Different two

classification types (DT [41] and NB [42]) are used to measure the classification

performance for all approaches that are used in the experiments. Classification

performance means in this thesis, accuracy, precision, and recall classification mea-

surements, see section 2.1.3.

5.1.3 Benchmarking and Experiment Design

All implementations are run on a personal computer running Windows 7 with (i5)

2.4 GHZ processor and 6GB memory. MBCSFS and BCSFS are implemented with

PHP language in same implementation and hardware. Genetic[37] with CFS [38]

and PSO[39] with CFS are known filter FS approaches, and they are implemented

in Weka tool[104]. We selected the genetic and PSO, because they are common

NIAs for FS, and they are implemented in Weka tool [92]. Also CFS is implemented
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in Weka tool, it is an efficient objective function for FS, because it measures the

redundant and relevant features in each candidate feature subset by evaluating

the correlation between each feature and the class labels and between each pair of

features using mutual information [38].

Some of parameters in these approaches are selected according to default param-

eters in Weka tool, some of them are shown as follows: population size is 20,

maximum number of iterations is 20. But the number of successive iterations(in

new stopping criterion) that is used in our experiments is three, appendix C ex-

plains the rational for choosing ”three” iterations. The ratio in new stooping

criterion is 50% for local search and 50% for global search.

Figure 5.1 illustrates main steps in experiment design.
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Figure 5.1: Experiment Design Steps.

5.1.3.1 Training, Learning and Test Sets

A common way to experiment the FS for classification is to divide each dataset

into two datasets randomly, training set, and learning and test set. A training set

has about 70% of the dataset objects, and 30% of the dataset objects for learning

and test sets [63, 93]. The training set is used by FS approaches to achieve features

reduction. And the learning and test set is used to build the classification model

and estimates the performance of classification.



Chapter 5. Experimental Design and Evaluation 52

In this work, we use K-fold cross-validation [94] that as is implemented in the

Weka tool to split the learning and test set into two disjoint sets to build the

classification model and estimate the classification performance. When an object

belongs to the test set, its class is hidden from the classification model built based

on the learning set only. In particular, K-fold cross-validation splits the learning

and test set into K subsets, then learning set is created on K-1 subsets, and test

set is created on the remaining subset, the size of k is 1% from learning and test

set. the process is repeated with several partitions to calculate the classification

performance.

5.1.3.2 Feature Reduction

We found, running the experiments five times was sufficient to obtain a good

comparison results between the two. Running the experiments longer than five

times did not provide additional value of comparison. Number of selected features

(features subset), and computational time are recorded for each run. In the next

step, run that achieved best classification accuracy is selected. Also PSO and

genetic approaches are run for each training set to achieve good feature reduction,

the number of selected features are recorded for each run. Remember, MBCSFS is

implemented in different environment from PSO [39], and genetic [37] approaches.

According to [3] DT and NB are common classification algorithms that are used

to estimate the classification performance, DT and NB are two algorithms from

top ten data mining algorithms, and they do not need complex initial parameters

[46]. For this, we use DT ”J48”[41] and NB[42] classification algorithms which

are implemented with Weka tool to measure the classification performance for

all approaches that are used in our experiments by applying these classification

algorithms on each reduced learning set to build the classification model that is

applied on test set to measure the classification performance. Also we measure

the classification performance for all datasets before and after FS.

5.2 Results and Discussion

In this section, MBCSFS is compared to BCSFS and other FS approaches, Table

5.2 shows the results of the comparison between the MBCSFS and BCSFS. Table
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5.3 shows the computational time for MBCSFS and BCSFS approaches. Table

5.4 shows the smallest feature subset which is converged by BCSFS. Comparison

between 3OG and traditional objective functions is found in table 5.5. Table 5.6

compares the performance of MBCSFS for FS to genetic and PSO approaches.

Differences in accuracy is considered significant when it is more than 5% [91], and

it is considered the same when it is less than 1%[63].

5.2.1 Comparisons between MBCSFS and BCSFS

Table 5.2 shows the experimental results of MBCSFS and BCSFS with sixteen

datasets. We note, no significant difference between average of precision and aver-

age of recall, for this, accuracy is enough to evaluate the classification performance

for most datasets which are used in experiments. Following paragraphs discuss

these results.

Nominal Datasets . Table 5.2, Figure 5.2 show that MBCSFS and BCSFS

achieve the same size reduction, DT accuracy, and NB accuracy for congressional

voting records dataset. In Mushroom, Soybean (small), Lung Cancer datasets,

MBCSFS and BCSFS achieve better or roughly same DT accuracy, and NB accu-

racy, but MBCSFS achieves significant size reduction compared to BCSFS. The

main reasons for these results are: 3OG and traditional objective functions [19]

have roughly the same efficiency for nominal datasets. Also MBCSFS convergence

is better when the number of available features is more than 20 features, and the

best feature subset is less than quarter of available features, see section 5.3.3. For

this, MBCSFS achieves better reduction

Mixed Datasets Table 5.2, figure 5.3 show MBCSFS achieves better feature

reduction in all mixed datasets compared to BCSFS. In zoo dataset, MBCSFS

achieves less size reduction, but it improves the classification accuracy (DT ac-

curacy=13%, NB accuracy=26.7%). MBCSFS achieves the same size reduction,

and significantly better classification accuracy according to DT and NB compared

to BCSFS in Hepatitis and German Credit Data. But in Dermatology dataset,

MBCSFS achieves better size reduction and classification accuracy (DT and NB)

than BCSFS. Reasons for these results, 3OG objective function is more efficient

than traditional objective function for mixed datasets (number of distinct values



Chapter 5. Experimental Design and Evaluation 54

Dataset Method Size SR% 
Decision Tree % Naive Bayes % 

Acc. Prec. Rec. DA Acc. Prec. Rec. DA 

Nominal Datasets 

Congressional 
Voting Records 

All 16  96.7 96.8 96.8  90.1 90.5 90.1  

MBCSFS 6 62.50 95.38 95.6 95.4 -1.32 94.6 94.6 94.6 4.5 

BCSFS 6 62.50 95.38 95.6 95.4 -1.32 94.6 94.6 94.6 4.5 

Mushroom 
 

All 22  100 100 100  95.8 96 95.8  

MBCSFS 4 81.82 98.4 98.5 98.4 -1.6 98.3 98.4 98.3 2.5 

BCSFS 6 72.73 99.7 99.8 99.8 -0.3 98.1 98.3 98.2 2.3 

Soybean(small) 

All 35  95.7 96.5 95.7  97.8 98.1 97.9  

MBCSFS 4 88.57 85.7 74.6 85.7 -10 100 100 100 2.2 

BCSFS 15 71.43 85.7 75.5 85.7 -10 92.8 94 92.9 -5 

Lung Cancer 

All 56  50 50 50  56.2 55.3 56.3  

MBCSFS 7 83.93 66.6 75.6 66.7 16.6 66.6 66.7 66.7 10.4 

BCSFS 18 67.86 37.5 31.3 37.5 -12.5 62.5 39.1 62.5 6.3 

Mixed Datasets 

Zoo 

All 17  93 95 93  94 94.6 94.1  

MBCSFS 7 58.8 93 95 93 0 96.7 97.8 96.7 2.7 

BCSFS 5 70.59 80 70 80 -13 70 70.6 70 -24 

Hepatitis 
 

All 19  80 80.2 80  83.2 84.1 83.2  

MBCSFS 4 78.94 84.7 86.9 86.4 4.7 86.9 86.6 86.9 3.7 

BCSFS 4 78.94 71.7 68.4 71.7 -8.3 73.9 72 73.9 -9.3 

German Credit 
Data 

All 20  71.2 69.4 71.1  35.1 74.7 35.1  

MBCSFS 6 70.00 68 67.3 68 -3.2 71.3 69.8 71.3 36.2 

BCSFS 6 70.00 67.3 62.1 67.3 -3.9 68 64.5 68 32.9 

Dermatology 
 

All 34  95.9 96 95.9  97.5 97.7 97.5  

MBCSFS 10 70.59 93.6 94.7 93.6 -2.3 98.1 98.4 98.2 0.6 

BCSFS 12 64.71 88.1 88.8 88.2 -7.8 93.6 94.1 93.6 -3.9 

Numerical Datasets 

Breast Cancer  
Wisconsin  
(Original)  

All 9  93.9 93 93  96.1 96.3 96.1  

MBCSFS 3 66.67 97.6 97.6 97.6 3.7 98.1 98.1 98.1 2 

BCSFS 3 66.67 97.6 97.6 97.6 3.7 98.1 98.1 98.1 2 

Wine 

All 13  91.5 91.6 91.6  97.7 97.8 97.8  

MBCSFS 3 76.92 87.3 87.3 87.1 -4.2 94.4 94.9 94.5 -3.3 

BCSFS 2 84.62 83 82.9 83 -8.5 84.9 84.8 84.9 -12.8 

Segment 

All 19  96.4 96.4 96.4  81.2 83.3 81.3  

MBCSFS 3 84.21 92.65 92.9 92.7 -3.75 83.1 82.9 83 1.9 

BCSFS 6 68.42 80.5 80.4 80.6 -15.9 67.8 67.8 67.6 -13.4 

Spectf 

All 44  66.25 67.1 66.3  80 82 80  

MBCSFS 6 86.3 75 75.7 75 8.75 83.33 84.3 83.3 3.33 

BCSFS 15 65.91 62.5 65.1 62.5 -3.75 75 75.7 75 -5 

Connectionist 
Bench (Sonar) 

All 60  70.2 70.2 70.2  67.3 67.3 66.9  

MBCSFS 13 78.33 79 78.9 79 8.7 67.7 67.4 67.7 0.4 

BCSFS 22 63.33 72.5 72.3 72.6 2.31 70.9 75 71 3.6 

Libras Movement 

All 90  64.4 65.8 64.4  62.2 63.6 62.2  

MBCSFS 7 92.22 60.5 60.6 60.6 -3.9 62.9 63.3 63 0.7 

BCSFS 37 58.89 45.3 43.5 45.4 -19.1 51.8 56.2 51.9 -10.4 

Musk (Version 1) 

All 168  100 100 100  76.8 77.5 76.9  

MBCSFS 7 95.83 96.2 97.7 96.2 -3.8 84.6 85.3 84.6 7.8 

BCSFS 71 57.74 56.6 32.1 56.6 -43.4 69.9 69.9 69.9 -6.9 

ISOLET-test 

All 617  78 78.3 78.1  83.7 84.8 83.8  

MBCSFS 51 91.73 76.2 76.4 75.9 -1.8 80.3 81.4 80.4 -3.4 

BCSFS 283 54.13 64.3 64.9 64.3 -13.7 73.2 75.8 73.3 -10.5 

All: Original Datasets. Size: Number of features. SR: Percentage of size reduction against all features Acc: Accuracy.  Prec: Precession 

Average.  Rec: Recall Average. DA: Difference accuracy between accuracy of all features and accuracy of feature subset 

Table 5.2: Results of BCSFS and MBCSFS.
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in their features is different), MBCSFS is more efficient than BCSFS when the

number of available features is more than 20 features (dermatology dataset).

 

Figure 5.2: Comparisons Between MBCSFS and BCSFS for Nominal
Datasets(SR% and Classification Accuracy).

 

Figure 5.3: Comparisons Between MBCSFS and BCSFS for Mixed
Datasets(SR% and Classification Accuracy).

Numerical Datasets. According to Table 5.2, figure 5.4, MBCSFS and BCSFS

achieve the same feature reduction in Breast Cancer Wisconsin (Original) dataset,

because the number of available features is 9 (less than 20 features), and the

number of distinct values of its features is the same. In wine dataset, MBCSFS

achieves less size reduction, but it achieves significant improvement of classification

accuracy (DT and NB) compared to BCSFS. Main reason for this, 3OG objective

function is more efficient than traditional objective function for this dataset which

its features have different number of distinct values. In ISOLET dataset, BCSFS

failed to achieve the feature reduction, it selects around half number of available

features compared to MBCSFS which selects 8% from available features without

significant classification accuracy reduction. High number of distinct values (close
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to total number of objects) for most of this dataset’s features, and the BCSFS’s

weak convergence are two main reasons for this results. High number of distinct

values and number of selected features make the RSTDD full dependency (100%)

for feature subsets which makes the BCSFS convergence uses local update only to

update the population of solutions, and this means, BCSFS is trapped into local

optimal.

 

Figure 5.4: Comparisons Between MBCSFS and BCSFS for Numerical
Datasets(SR% and Classification Accuracy).

In remaining datasets, MBCSFS achieves better significant size reduction than

BCSFS (from 15.7% to 38.1%), with significant improvement in the classification

accuracy according to DT and NB(except sonar dataset, there is no significant

reduction of classification accuracy according to NB). MBCSFS has better efficient

convergence than BCSFS, especially when the number of available features for

these datasets is more than 20 features. Also 3OG objective is more efficient than

traditional objective function when the datasets have different number of distinct

values in their features

Finally, MBCSFS and BCSFS have the same efficiency when they are applied

on datasets that have less than 20 features, and their features have roughly the

same number of distinct values. But MBCSFS is more efficient than BCSFS when

they are applied on datasets that have more than 20 features, and their features

have different number of unique values. According to balancing between the size

reduction and classification accuracy, MBCSFS is more efficient than BCSFS in 14

datasets, and both approaches have the same efficiency in remaining two datasets.
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5.2.2 Analysis of Computational Time

Table 5.3 shows the computational time of BCSFS and MBCSFS in seconds for

each dataset. Most of their computational time was spent in the objective func-

tion procedures such as calculating the number of distinct values and dependency

degree. Objective function runs twenty times (population size.) in each iteration.

In spite of the extra time needed for the new objective function that is used in

MBCSFS, MBCSFS took less time (about 34.4% from BCSFS time) than BCSFS

in all datasets, see figure 5.5. The main reason for this difference is that less num-

ber of iterations is needed in MBCSFS to reach to best feature subset, because

MBCSFS has fast and efficient convergence compared to BCSFS, and MBCSFS

stops when three successive iterations do not improve the value of objective func-

tion, but the BCSFS continues searching for best solution until it reaches maximum

number of iterations (20 iterations).

Dataset 
BCSFS MBCSFS 

Itr. # Time(S)  Time(S) For Convergence Itr. # Time(S) 

Breast Cancer Wisconsin  
(Original) 

7 3.68599 1.682 4 1.4092 

Wine 10 1.053916 0.642 6 0.551574 

Hepatitis 12 0.95728 0.7490 6 0.440 

Congressional Voting Records 4 1.864377 0.6159 2 0.4217 

Zoo 13 0.574956 0.532 4 0.240 

Segment 18 13.07107 12.78 4 5.010 

German Credit Data 7 7.49066 3.31 1 1.644 

Mushroom 12 63.00201 50.46 3 19.73 

Dermatology 3 5.51263 1.355 2 1.496 

Soybean(small) 8 0.696 0.403 4 0.271 

Spectf 13 1.45408 1.216 7 0.824 

Lung Cancer 5 0.861 0.287 1 0.184 

Connectionist Bench (Sonar) 19 3.064 2.93 3 0.894 

Libras Movement 9 6.336 3.793 3 2.033 

Musk (Version 1) 14 12.624 10.59 9 9.715 

ISOLET-test 1 168.7582 16.091 3 55.398 

Itr. #: Number of iterations needed to find the solution. Time(S): Time in seconds needed for approach 

(20iterationas) to find the best feature subset. Time(S) for convergence: Time in seconds for BCSFS needed for 

number of iterations that found the best feature subset 

Table 5.3: Computational Time of BCSFS and MBCSFS.
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Figure 5.5: Time Difference Between MBCSFS and BCSFS (%).

5.2.3 Analysis of convergence

This section discusses the efficiency of MBCSFS convergence, table 5.2 shows

that MBCSFS can converge the datasets with different sizes (from 9 features to

617 features), but the BCSFS’s convergence efficiency decreases as the number of

features increases more than 20, and the best features subset is the one which has

less than quarter of available features, see table 5.4. BCSFS can select about the

quarter of available features when the size of dataset is less than or equal to 20,

for this, we can consider the BCSFS convergence is efficient for the datasets that

have less than 20 features. Also 4.3 discussed these results theoreticaly.
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Figure 5.6: Number of iterations needed to reach the best features subset
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Dataset Features Smallest Subset 

Breast Cancer Wisconsin  (Original) 9 2 

Wine 13 2 

Hepatitis 19 4 

Congressional Voting Records 16 4 

Zoo 17 4 

Segment 19 5 

German Credit Data 20 5 

Mushroom 22 6 

Dermatology 34 10 

Soybean(small) 35 10 

Spectf 44 14 

Lung Cancer 56 17 

Connectionist Bench (Sonar) 60 18 

Libras Movement 90 32 

Musk (Version 1) 168 67 

ISOLET-test 617 281 
Smallest Subset: Smallest subset that BCSFS can converge in 20 iterations 

Table 5.4: Smallest feature subsets for BCSFS.
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Figure 5.7: Time Difference Between MBCSFS convergence and BCSFS con-
vergence (%)
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Now we evaluate the number of iterations needed to find the best feature subset.

Isolet-test dataset has numerical features that have very high number of distinct

values (low frequent values) in its features, and BCSFS selects about the half num-

ber of available features. This means, the value of traditional objective function

is 100%, which means BCSFS’s convergence use local update only to generate

new candidate feature subsets after the first iteration (BCSFS trapped into local

optimal). Table 5.3, and figure 5.6 show the number of iteration needed to find

the best features subset in both approaches. MBCSFS needs 57% iterations from

BCSFS iterations to find the best features subset in these datasets. Time for each

iteration in MBCSFS needs more time compared to BCSFS, because the 3OG

objective function cost more than traditional objective function[19], in general

MBCSFS convergence needs less time compared to BCSFS convergence ,because

it needs less number of iteration to find the best feature subset.

Figure 5.7 shows the time difference in percentage for convergence for both ap-

proaches. MBCSFS convergence needs less time compared to BCSFS convergence

in 14 datasets, because MBCSFS needs less significant number of iterations to

converge the search space in these datasets compared to BCSFS, but in dermatol-

ogy, the difference in number of iterations between them is little( one iteration),

for this, MBCSFS needs a little bit more time compared to BCSFS to find the

best feature subset. But in isolet-test dataset, BCSFS failed to achieve feature

reduction

5.2.4 Analysis of New Objective Function ”3OG”

To evaluate the new objective function ”3OG”, traditional objective function[19] is

combined to MBCSFS instead of 3OG objective function to construct MBCSFS T

approach which is implemented with PHP language, and it run five times for each

training set, then the classification performance are measured using NB and DT

that are implemented in Weka tool. Table 5.5 shows the experimental results of

MBCSFS and MBCSFS T.

According to table 5.5, and figure 5.8, 3OG objective function and traditional

objective function [19] have the same efficiency when they are applied on the

nominal datasets that have the same or roughly same number of distinct values in

their features.
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Dataset Method Size 
Decision Tree % Naive Bayes % 

Acc. Prec. Rec. Acc. Prec. Rec. 

Congressional 
Voting Records 

All 16 96.7 96.8 96.8 90.1 90.5 90.1 

MBCSFS 6 95.38 95.6 95.4 94.6 94.6 94.6 

MBCSFS-T 6 94.6 94.8 94.6 93.8 94.1 93.8 

Mushroom 
 

All 22 100 100 100 95.8 96 95.8 

MBCSFS 4 98.4 98.5 98.4 98.3 98.4 98.3 

MBCSFS-T 4 99.42 99.4 99.4 97.947 97.9 97.9 

Soybean(small) 

All 35 95.7 96.5 95.7 97.8 98.1 97.9 

MBCSFS 4 85.7 74.6 85.7 100 100 100 

MBCSFS-T 4 85.7 75.5 85.7 100 100 100 

Lung Cancer 

All 56 50 50 50 56.2 55.3 56.3 

MBCSFS 7 66.6 75.6 66.7 66.6 66.7 66.7 

MBCSFS-T 7 66.6 75.6 66.7 66.6 66.7 66.7 

Zoo 

All 17 93 95 93 94 94.6 94.1 

MBCSFS 7 93 95 93 96.7 97.8 96.7 

MBCSFS-T 4 66.6 47.7 66.7 73.3 58.2 73.3 

Hepatitis 
 

All 19 80 80.2 80 83.2 84.1 83.2 

MBCSFS 4 84.7 86.9 86.4 86.9 86.6 86.9 

MBCSFS-T 4 84.4 86.6 87 80.4 79.8 80.4 

German Credit 
Data 

All 20 71.2 69.4 71.1 35.1 74.7 35.1 

MBCSFS 6 68 67.3 68 71.3 69.8 71.3 

MBCSFS-T 5 63.6 58.3 63.7 66.7 63 66.7 

Dermatology 
 

All 34 95.9 96 95.9 97.5 97.7 97.5 

MBCSFS 10 93.6 94.7 93.6 98.1 98.4 98.2 

MBCSFS-T 8 86.3 82.4 86.4 86.4 83.8 86.4 

Breast Cancer  
Wisconsin  
(Original)  

All 9 93.9 93 93 96.1 96.3 96.1 

MBCSFS 3 97.6 97.6 97.6 98.1 98.1 98.1 

MBCSFS-T 3 97.6 97.6 97.6 98.1 98.1 98.1 

Wine 

All 13 91.5 91.6 91.6 97.7 97.8 97.8 

MBCSFS 3 87.3 87.3 87.1 94.4 94.9 94.5 

MBCSFS-T 2 75.4 74.9 75.9 83 82.7 83 

Segment 

All 19 96.4 96.4 96.4 81.2 83.3 81.3 

MBCSFS 3 92.65 92.9 92.7 83.1 82.9 83 

MBCSFS-T 2 82.1 82.1 82.1 71.2 70.8 71.2 

Spectf 

All 44 66.25 67.1 66.3 80 82 80 

MBCSFS 6 75 75.7 75 83.33 84.3 83.3 

MBCSFS-T 2 50 25 50 54.1 54.2 54.2 

Connectionist 
Bench (Sonar) 

All 60 70.2 70.2 70.2 67.3 67.3 66.9 

MBCSFS 13 79 78.9 79 67.7 67.4 67.7 

MBCSFS-T 2 67.7 67.2 67.7 67.7 67.7 67.7 

Libras Movement 

All 90 64.4 65.8 64.4 62.2 63.6 62.2 

MBCSFS 7 60.5 60.6 60.6 62.9 63.3 63 

MBCSFS-T 5 36.1 36.9 36.1 44.4 43 44.4 

Musk (Version 1) 

All 168 100 100 100 76.8 77.5 76.9 

MBCSFS 7 96.2 97.7 96.2 84.6 85.3 84.6 

MBCSFS-T 4 63.6 63.8 63.6 67.8 68.3 67.8 

ISOLET-test 

All 617 78 78.3 78.1 83.7 84.8 83.8 

MBCSFS 51 76.2 76.4 75.9 80.3 81.4 80.4 

MBCSFS-T 17 32.2 33.4 32.3 49.7 50.9 49.8 

Table 5.5: Results of MBCSFS with 3OG and MBCSFS with traditional
objective function(MBCSFS T).
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Figure 5.8: MBCSFS vs MBCSFS T for Nominal Datasets (Accuracy, SR%).

Table 5.5 results, and figure 5.9 shows that 3OG objective function is more efficient

than traditional objective function for mixed and numerical datasets. 3OG helps

the MBCSFS to achieve size reduction without significant classification accuracy

reduction, but traditional objective function makes the BCSFS achieve significant

size reduction with significant reduction of classification accuracy. But in breast

cancer wisconsin (original) dataset, both objective functions have the same ef-

ficiency, because the features in this dataset have the same number of distinct

values.

 

Figure 5.9: MBCSFS vs MBCSFS T for Mixed and Numerical Datasets (Ac-
curacy, SR%).

Generally, 3OG and traditional objective function have the same efficiency for

nominal datasets, and the datasets which their features have roughly the same

distinct of values. But the 3OG objective function is more efficient for mixed and

numerical datasets which their features have different number of distinct values.
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5.2.5 Classification Performance Before and After MBCSFS

According to table 5.2, and figure 5.10, MBCSFS achieves significant size reduc-

tion(average 79.4%), without significantly reducing or improving the classification

performance on all datasets according to DT except soybean(small), and in all

datasets according to NB, (difference in accuracy is considered significant when it

is more than 5% [91]).

 

Figure 5.10: Classification Accuracy Before and After MBCSFS.

MBCSFS approach is efficient for DT and NB which are different type classification

algorithms, according to [3], when MBCSFS is efficient for DT and NB, MBCSFS

is general for different type of classification algorithms.

5.2.6 Comparisons between MBCSFS, PSO with CFS, and

Genetic with CFS

In general, figure 5.11 shows that MBCSFS achieves best size reduction and classi-

fication accuracy (DT and NB) compared to PSO and genetic. MBCSFS removes

about 79% from all features with improving the classification accuracy (DT and

NB). PSO removes 59.8% from all features with significant reduction of DT classi-

fication accuracy (-8.6%), and reduction of the NB classification accuracy (-3.5%).

Genetic removes 58.8% from all features with significant reduction of DT classifi-

cation accuracy (-5.8%), and reduction of the NB classification accuracy (-1.67%).

According to table 5.6, figure 5.12, and figure 5.13, it can be seen that MBCSFS se-

lects smallest feature subsets (MBCSFS, PSO, and genetic remove from all features
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Dataset Method Size 

Decision Tree Naive Bayes 

Acc. Prec. Rec. Acc. Prec. Rec. 

Breast Cancer  
Wisconsin (Original)  

MBCSFS 3 97.6 97.6 97.6 98.1 98.1 98.1 

Genetic 9 92.8 92.9 92.8 97.1 97.2 97.1 

PSO 9 92.8 92.9 92.8 97.1 97.2 97.1 

Wine 

MBCSFS 3 87.3 87.3 87.1 94.4 94.9 94.5 

Genetic 11 86.7 87.7 86.8 92.4 93.1 92.5 

PSO 11 86.7 87.7 86.8 92.4 93.1 92.5 

 
Hepatitis 

 

MBCSFS 4 84.7 86.9 86.4 86.9 86.6 86.9 

Genetic 8 78.2 75.4 78.3 78.2 76.8 78.3 

PSO 9 78.2 75.4 78.3 78.2 76.8 78.3 

Congressional  
Voting Records 

MBCSFS 6 95.38 95.6 95.4 94.6 94.6 94.6 

Genetic 3 95.38 95.6 95.4 96.1 96.2 96.2 

PSO 3 93 95 93 96.7 97.8 96.7 

Zoo 

MBCSFS 7 93 95 93 96.7 97.8 96.7 

Genetic 10 86.6 80.7 86.7 86.6 81.7 86.7 

PSO 9 86.6 80.7 86.7 76.6 74.7 76.7 

Segment 

MBCSFS 3 92.65 92.9 92.7 83.1 82.9 83 

Genetic 9 91.9 92 92 80.8 81 80.8 

PSO 8 91.5 98 98 82.14 91.4 91.5 

German Credit Data 

MBCSFS 6 68 67.3 68 71.3 69.8 71.3 

Genetic 4 65.3 62 65.3 65.3 62 65.3 

PSO 4 65.3 62 65.3 65.3 62 65.3 

 
Mushroom 

 

MBCSFS 4 98.4 98.5 98.4 98.3 98.4 98.3 

Genetic 6 98.7 98.8 98.8 98.7 98.8 98.8 

PSO 6 98.85 98.9 98.9 98.7 98.8 98.8 

Dermatology 
 

MBCSFS 10 93.6 94.7 93.6 98.1 98.4 98.2 

Genetic 21 95.4 95.9 95.4 97.2 97.4 97.3 

PSO 20 75.8 76.9 75.9 68.9 68.8 69 

Soybean(small) 

MBCSFS 4 85.7 74.6 85.7 100 100 100 

Genetic 21 85.7 75.5 85.7 100 100 100 

PSO 21 64.2 55.7 64.3 100 100 100 

Spectf 

MBCSFS 6 75 75.7 75 83.33 84.3 83.3 

Genetic 6 75 78.1 75 79.16 85.3 79.2 

PSO 6 75 78.1 75 79.16 85.3 79.2 

Lung Cancer 

MBCSFS 9 66.6 75.6 66.7 66.6 66.7 66.7 

Genetic 2 62.5 39.1 62.5 37.5 15.6 37.5 

PSO 5 62.5 39.1 62.5 37.5 39.6 37.5 

Connectionist Bench 
(Sonar) 

MBCSFS 13 79 78.9 79 67.7 67.4 67.7 

Genetic 13 67.7 67.2 67.7 66.1 68.4 66.1 

PSO 13 67.7 68.1 67.7 67.7 68.8 67.7 

Libras Movement 

MBCSFS 7 60.5 60.6 60.6 62.9 63.3 63 

Genetic 18 43.5 40.5 43.5 43.5 47.5 43.5 

PSO 25 38.8 34.7 38.9 49.2 54 49.1 

Musk (Version 1) 

MBCSFS 7 96.2 97.7 96.2 84.6 85.3 84.6 

Genetic 62 56.6 32.1 56.6 75.5 75.7 75.5 

PSO 35 56.6 32.1 56.6 72.7 72.8 72.7 

ISOLET-test 

MBCSFS 51 76.2 76.4 75.9 80.3 81.4 80.4 

Genetic 257 67.3 68.3 67.3 73.7 75.5 73.3 

PSO 236 69.4 69.5 69.4 76.1 77.6 76.1 

Table 5.6: Results of MBCSFS, Genetic with CFS, and PSO with CFS.
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Figure 5.11: General Comparison between MBCSFS, PSO, and Genetic ap-
proaches .

79.87%, 49.7%, and 46.8% respectively) without significant reduction of classifica-

tion performance (DT and NB) from available features on breast cancer wisconsin

(original), zoo, Hepatitis, mushroom, dermatology,Soybean(small) , libras move-

ment, musk (version 1), wine, segment, and ISOLET-test datasets.
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Figure 5.12: SR% of MBCSFS, PSO, and Genetic .

In spectf, and connectionist bench (sonar) datasets, MBCSFS, PSO, and genetic

achieves the same size reduction, and three approaches achieve the same DT classi-

fication accuracy in spectf dataset, while MBCSFS improves the NB classification

accuracy, but PSO and genetic achieve reduction of NB classification accuracy

in the same dataset. In connectionist bench (sonar) MBCSFS achieves better

classification accuracy according to DT and NB.
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Figure 5.13: Classification Accuracy of MBCSFS, PSO, and Genetic .

In german credit data, and lung cancer, PSO and genetic achieve more size reduc-

tion than MBCSFS, but MBCSFS achieve better classification accuracy according

to DT and NB.

In congressional voting records, MBCSFS achieves less size reduction compared

to PSO and genetic, but the classification accuracy (DT and NB) is the same or

roughly the same for three approaches.

Generally, MBCSFS achieves better feature reduction than PSO and genetic in 15

datasets.

5.3 Summary

This chapter has examined the proposed algorithm (MBCSFS) by some experi-

ments, and discussed the results for these experiments. All experiments are run on

sixteen datasets that are taken from UCI repository database [40], these datasets

are selected randomly as follows. Four from nominal datasets, four from mixed

datasets, eight from numerical datasets. DT ”J48”[41] and NB [42] classification

algorithms which are implement in Weka tool are used to measure the classification

performance.

Results show that MBCSFS and BCSFS(implemented with PHP) have the same

efficiency when they are applied on nominal datasets that have less than 20 fea-

tures. But MBCSFS is more efficient than BCSFS on two cases: First, when they

are applied on datasets that have more than 20 features, because the MBCSFS’s

convergence is more efficient than BCSFS’s convergence. Second, when they are
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applied on mixed and numerical datasets, because 3OG objective function in

MBCSFS is more efficient than traditional objective function in BCSFS . When

balancing between the size of reduction and classification accuracy, MBCSFS is

more efficient than BCSFS in 14 datasets, and both approaches have the same

efficiency in two datasets.

MBCSFS’s convergence is more efficient than BCSFS, and it needs 57% iterations

from BCSFS, also MBCSFS has efficient stopping criterion compared to BCSFS.

For this, MBCSFS took lesser time (about 34.4% from BCSFS time) than BCSFS.

3OG and traditional objective function have the same efficiency for nominal datasets,

and the datasets which their features have roughly the same number distinct of val-

ues. But the 3OG objective function is efficient for mixed and numerical datasets

which their features have different number of distinct values, compared to tra-

ditional objective function which is inefficient for them. Main reason for these

results, 3OG measure the frequent values in addition to RSTDD to guide the

search algorithm to best subset of features, but the traditional objective function

use RSTDD only.

MBCSFS is compared to genetic with CFS, and PSO with CFS which are imple-

mentd in Weka tool, MBCSFS achieves better feature reduction compared to PSO

and genetic on 15 datasets.



Chapter 6

Conclusion

This chapter conclude the thesis. A summary of literature review is presented

with focus on the main contributions, results, limitations and assumptions, and

future work.

6.1 Introduction

In our literature review, we focused on meta-heuristic filter FS approaches espe-

cially NIAs. Because NIAs approaches have been shown to have faster and more

efficient convergence compared to heuristic approaches which have slower and less

efficient convergence, and complete approaches which are very expensive. In the

exiting literature, there are many filter FS that used RSTDD to evaluate the can-

didate feature subsets that were generated from NIAs, that RSTDD relatively

cheaper, easier to implement, and does not need any preliminary or additional

information about data. The main drawback of these approaches is that of the

efficiency of convergence decreases as the number of features increases. And these

approaches are inefficient for mixed and numerical datasets [18–26]

.

Chapter 4 proposed a new filter FS for classification based on BCS , RSTDD and

distinct values to achieve feature reduction for nominal, mixed, and numerical

datasets with different characteristics of datasets especially different number of

features achieving in shorter computational time.

68
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The rest of this chapter presents the conclusion including contributions, summary

of results, limitation and assumptions. Also it presents potential research areas

for future work.

6.2 Contributions

The main contributions of this thesis, the development of new objective function,

and a modified BCS algorithm ( Chapter 4). These contribution are summarized

as bellow :

6.2.1 Objective function

A new objective function (3OG) has been developed to select the feature subset

that achieve maximum classification performance, and minimum number of fea-

tures for nominal, mixed, and numerical datasets, by combining RSTDD [19] and

distinct values. RSTDD measures the dependency between the feature subsets

and class labels. Distinct values measure the average number of distinct values in

feature subset to help the 3OG selects the subset that has more frequent values to

achieve more efficient results for mixed and numerical datasets as well as nominal

datasets. Finally, 3OG selects the minimum feature subset that has maximum

dependency to class labels (Maximum RSTDD) and maximum frequent values

(minimum number of distinct values) to achieve maximum classification perfor-

mance for nominal, mixed, and numerical datasets .

6.2.2 Modified Binary Cuckoo Search

The thesis developed a modified BCS algorithm by developing a new initialization,

global, local, switching, and stopping criterion mechanisms. Following paragraphs

show these points:

Initialization and Global Search: The initialization and global mechanisms

can significantly increase the performance of our work (MBCSFS) to reduce the

number of features and computational time.
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Our work divided the initialization and global mechanism to three parts to make

it faster as well as converge for datasets with different number of features. First

part converge small optimal solution (about 25% from total features). Second part

converge medium size(about 50% from total features). And the last part converge

large size of optimal solutions(about 75% from total features).

New Local Search: aims to increase the chance to find the global optimal so-

lution in a lesser number of iterations. The main idea is that the size of modifi-

cations of the current solutions decreases as the number of generations/iterations

increases.

New Switching Criterion: The switching criterion can improve the performance

of our work to solve local optimum problem.

We developed a new switching mechanism by dividing the nests equally for local

and global search, to guarantee that local and global searches are run in each iter-

ation. As shown, in chapter 5, this helped significantly improve the performance

of the algorithm.

New Stopping Criterion: Similarly the stopping criterion can significantly in-

crease the performance of our work to reduce the computational time.

We developed a new stopping criterion by stopping the algorithm after three suc-

cessive iterations if there is no improvement in the current solution.

Results show that our work achieved more efficient convergence for datasets that

have different number of features (up to 617 features), and it improve the compu-

tational time than BCS.

6.3 Results

Our work is evaluated by comparing it to the baseline algorithm (BCSFS), as well

as with genetic [37] with CFS and PSO [39] with CFS [38] approaches. Our work

and baseline approach were implemented in PHP, for the genetic with CFS and

PSO with CFS, the native Weka implementation was used. These approaches were

run on 16 datasets taken from UCI, and these approaches were evaluated by DT

and NB classification algorithms, using their native Weka implementation.
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Results show our work achieved better feature reduction on 14 datasets, and the

same feature reduction on two datasets compared to the baseline approach. Our

work took lesser time compared to the baseline approach on the datasets. Our

work also achieved significant size reduction without significant reduction in accu-

racy compared to classification accuracy for all features for nominal, mixed, and

numerical datasets(except soybean(small) according to DT). It also achieved bet-

ter feature reduction on 15 datasets compared to genetic and PSO approaches.

These results are described in the following points.

• Our work and baseline approach achieved the same size reduction for nominal

datasets that have less than 20 features, but ours achieved better feature re-

duction compared to BCSFS for all datasets that have more than 20 features.

This means, our work has better convergence compared to the baseline, and

3OG is more efficient( maximum classification performance with minimum

number of features) than the traditional objective function for mixed and

numerical datasets.

• Our work took less time (about 34.4% of BCSFS time) than the baseline

approach in all datasets, faster convergence, more efficient convergence, and

new stopping criterion for MBCSFS are the main reason for it.

• Our work achieved significant size reduction (about 79% on average), without

significantly reducing the classification accuracy on 15 datasets(less than 5%

from accuracy of all features ). Efficient convergence and efficient 3OG

objective function are the main reasons for it.

• Our work removed 79% from all features with improve the classification accu-

racy according to DT and NB . While PSO removed 59.8% from all features

with significant reduction of classification accuracy (DT:-8.6%, NB:-3.5%).

But genetic removed 58.8% from all features without significant reduction

of classification accuracy (DT:-5.8%, NB:-1.67%).

6.4 Limitations and Assumptions

16 datasets with different characteristics were selected to evaluate our work for

many characteristics such as difefrent number of features, different types, different
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number of classes, and different number of objects, but it is impossible that these

datasets cover all characteristics such as all number of features, all number of

objects, and all number of classes. This section explains some of assumptions and

limitations of our works as follows:

• We assumed all datasets do not have missing values.

• The maximum number of features that is used in the experiments is 617,

thus we could not ascertain how the algorithm would scale for datasets with

larger number of features.

• Our work achieved feature reduction for datasets that have from 2 to 26

classes, and from 36 to 8124 objects, similarly, we could not ascertain how

the algorithm would scale for datasets with larger number of objects or

classes.

6.5 Future Work

This section presents the main areas for future work for our work as follows:

• This thesis used distinct values to develop new objective function, but the

unique features, and the big difference between the numbers of distinct values

for each feature decrease the performance of our work. Therefore we need to

investigate the performance of our work by dealing these the two limitations

of our objective function.

• Maximum number of features are used in this thesis is 617, to investigate the

capability of our work on datasets that greater than 1000 features, alternative

initialization and global search would need to be further investigated to

develop a more dynamic approach to automatically subdivide the datasets

to search groups that provide optimal efficient computation.



Appendix A

Rough Set Theory

Rough Set Theory(RST) was developed by Zdzislaw Pawlak in the early 1982s

[15] as a mathematical tool that deals with classificatory analysis of data table.

Many researchers are very interested in RST, and applied it in many domains for

many reasons. First, it provides efficient methods for finding hidden patterns in

data. Second, it allows to reduce original data without additional information

about data. Third, It is easy to understand. Fourth, it allows to evaluate the

significance of data using data alone[16, 17]. Basic concepts of RST is discussed

below.

Information table or information system: Dataset in RST is called informa-

tion table or information system. Let I=(U,A), where I is information table/system

, U is a nonempty set of finite objects and A is a nonempty set of attributes/fea-

tures. In table A.1, {a,b,c,d,e} are features, but the features consist of four

conditional features and one decision feature(Class) D={e}. {0,1,2,3,4,5,6,7} are

objects[15–17].

Indiscernibility: Any subset P of A determines a binary relation IND(P) on U,

which is called an indiscernibility relation. Indiscernibility(IND) is equivalence

relation on the set U, where all the values are identical in relation to a subset of

attributes. For example, if P={b,c}, IND(P) creates the following partitions of U:

U/IND(P)

Positive region: Let P and Q be equivalence relations over U , then the positive

region contains all objects of U that can be classified to classes of U/Q using

information in attributes/features P [19,20.30,31]. For example, let P ={b,c} and

73
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X ϵ U  a b c d e 

0 1 0 2 2 0 

1 0 1 1 1 2 

2 2 0 0 1 1 

3 1 1 0 2 2 

4 1 0 2 0 1 

5 2 2 0 1 1 

6 2 1 1 1 2 

7 0 1 1 0 1 

Table A.1: Information System [35].

Q ={e} ,then posP (Q)=
⋃
{{2,5}, {3}} = {2,3,5}. More details 2,3,5 objects

certainly classified into same class. 0,4 objects have the same values{0,2} for

{b,c} features , but it is classified into different class (object 0 is classified to 0

class, and object 4 is classified to 1 class), for this reason, 0,4 objects are not

included in positive region[6, 28].

Dependency Degree is very important issue in data analysis to discover the

dependencies between attributes. For P,Q ⊂A, if all attribute values from Q are

uniquely determined by values of attributes from P, this means Q depends totally

on P, and partial dependency if some values of Q are determined by values of

P, it is said that Q depends on P in a degree K(0 ≤ K ≤1) . If 0 ≤ K ≤1, Q

depends partially (in a degree k) on P, and if k = 0, then Q does not depend on

P. Dependency degree can be defined as equation A.1 [17, 35, 67]:

γP (Q) = K =
|posP (Q)|
|U |

(A.1)

Where |U | is the total number of objects, |posP (Q)| is the number of objects in

a ppositive region, and γP (Q) is the dependency between feature subset p and

classes Q.

For example (table A.1), the degree of dependency of feature {e} upon the {b,c}
as follows:

γb,c(e) =
|posb,c(e)|

|U | = {2,3,5}
{0,1,2,3,4,5,6,7}=3

8
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Lévy Flights

In nature, many animals and insects search for food by moving to the next location

based on the current location. This behavior of search called lévy flight that is

a special case of random walks where the step size has a Levy tailed probability

distribution to maximize the guarantee and speed of convergence [74]. Step sizes

is the main factor of the efficiency of lévy flight search. Lévy flight is modeled

in the equation B.1. Remember each solution must be a binary vector, but this

equation does not return a binary bit. In order to build a binary vector for each

solution, existing study uses equation B.3 and equation B.4 for each feature at

each new candidate solution.

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 +α ⊕ L´evy(λ)                                                          (B.1) 

 

L´evy ∼ u = t−λ                                                            (B.2)  

Where xt+1
(i,j) represents the jth egg(feature) at ith nest(solution) in iteration t , α is

the step size(α >0) scaling factor of the problem, In most cases, we can use α=1.

⊕ means entry-wise multiplications, and λ: Lévy distribution coefficient (0 < λ ≤
3). Random step length(Lévy(λ) is calculated from power low by the equation

B.2.
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S(x(i,j) 
t+1 ) = 

1

 1+𝑒
−𝑥𝑖,𝑗

𝑡+1                          (B.3) 

  

  x(i,j) 
t+1 =                           (B.4)

  

1  , S(x(i,j) t+1 )  >σ 

0 , Otherwise 

 

Where σ ∈[0,1], in iteration t .



Appendix C

New Stopping Criterion

It is very difficult to determine if the algorithm finds the optimal feature subset

or not, because the evaluation of feature subset depends on its size and quality.

For this reason, most of existing approaches uses maximum iterations to stop the

algorithm. In most cases, this causes wasting much time without improving the

solutions.

Table C.1 shows our work searching for two datasets. First dataset is mushroom

which has 22 features and 8124 objects. Second dataset is libras lovement that has

90 features and 360 objects. Our work finds the best feature subset for mushroom

dataset in sixth iteration, and in the libras lovement dataset in third iteration,

while algorithm continue searching to reach the maximum number of iterations in

both datasets. This means, our work wastes much time without any use. Accord-

ing to results in table C.1, when three successive iterations do not improve the

current best solution, this means, there is no a chance to improve them, and the

algorithm must stop before reaching to maximum number of iterations.

77
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Mushroom Dataset 

Itr# Number of Selected Features Values of objective function “3OG” 

1 6 0.7264 

2 13 0.4086 

3 6 0.7265 

4 8 0.6358 

5 5 0.7718 

6 3 0.8627 

7 7 0.6809 

8 8 0.6355 

9 7 0.6810 

10 6 0.7263 

11 6 0.7263 

12 9 0.59014 

13 10 0.5447 

14 9 0.590 

15 4 0.8170 

16 5 0.7718 

17 5 0.7720 

18 11 0.4994 

19 19 0.7266 

 

Libras Movement Dataset 

Itr# Number of Selected Features Values of objective function “3OG” 

1 5 0.3255 

2 7 0.3056 

3 5 0.3494 

4 7 0.3265 

5 20 0.2783 

6 9 0.33003 

7 6 0.3209 

8 20 0.26837 

9 9 0.3130 

10 5 0.31282 

11 11 0.3012 

12 19 0.278 

13 7 0.325 

14 4 0.320 

15 21 0.279 

16 10 0.3344 

17 13 0.29368 

18 10 0.31023 

19 5 0.3426 

Table C.1: Our Work Searching on Mushroom and Libras Movement Datasets
.



Appendix D

Classifications of Dimensionality

Reduction

 

Dimintionality 
Reduction

Feature 
Selection

Ranked 
Approaches

Feature Subset 
Evaluation

Complete 
Approaches

Heuristic 
Approaches

Meta-heuristic 
Approaches

Nature 
Inspired  

Approaches

Ant Colony 
Optimization 

Particle Swarm 
Optimization

Artificial Bee 
Colony

Cuckoo Search

Binary 
Cuckoo 
Search

Non-nature 
Inspired 

Approaches

Feature 
Extration/Transform

ation

Linear 
Approaches

Non-linear 
Approaches

Figure D.1: Classification of Dimensionality Reduction.
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[61] Isabelle Guyon and André Elisseeff. An introduction to variable and feature

selection. The Journal of Machine Learning Research, 3:1157–1182, 2003.
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A brief review of nature-inspired algorithms for optimization. arXiv preprint

arXiv:1307.4186, 2013.



Bibliography 86

[67] Silvia Rissino and Germano Lambert-Torres. Rough set theory–fundamental

concepts, principals, data extraction, and applications. Data Mining and

Knowledge Discovery in Real Life Applications, page 438, 2009.
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